Filter

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 27 result(s)
Country
The Yeast Metabolome Database (YMDB) is a manually curated database of small molecule metabolites found in or produced by Saccharomyces cerevisiae (also known as Baker’s yeast and Brewer’s yeast). This database covers metabolites described in textbooks, scientific journals, metabolic reconstructions and other electronic databases.
The Yeast Resource Center provides access to data about mass spectrometry, yeast two-hybrid arrays, deconvolution florescence microscopy, protein structure prediction and computational biology. These services are provided to further the goal of a complete understanding of the chemical interactions required for the maintenance and faithful reproduction of a living cell. The observation that the fundamental biological processes of yeast are conserved among all eukaryotes ensures that this knowledge will shape and advance our understanding of living systems.
The Yeast Resource Center Public Image Repository is a database of fluorescent microscopy images and their associated metadata/experimental parameters. The images depict the localization, co-localization and FRET (fluorescence energy transfer) of proteins in cells, particularly in the budding yeast Saccharomyces cerevisiae as a model organism. Users may download the entire datasets to improve their research.
TheCellVision.org is a freely available and web-accessible image visualization and data browsing tool that serves as a central repository for fluorescence microscopy images and associated quantitative data produced by high-content screening experiments. Currently, TheCellVision.org hosts images and associated analysis results from two published high- content screening (HCS) projects focused on the budding yeast Saccharomyces cerevisiae. TheCellVision.org allows users to access, visualize and explore fluorescence microscopy images, and to search, compare, and extract data related to subcellular compartment morphology, protein abundance, and localization. Each dataset can be queried independently or as part of a search across multiple datasets using the advanced search option. The website also hosts computational tools associated with the available datasets, which can be applied to other projects and cell systems, a feature we demonstrate using published images of mammalian cells. Providing access to HCS data through websites such as TheCellVision.org enables new discovery and independent re-analyses of imaging data."
The Saccharomyces Genome Database (SGD) provides comprehensive integrated biological information for the budding yeast Saccharomyces cerevisiae along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms.
Country
During cell cycle, numerous proteins temporally and spatially localized in distinct sub-cellular regions including centrosome (spindle pole in budding yeast), kinetochore/centromere, cleavage furrow/midbody (related or homolog structures in plants and budding yeast called as phragmoplast and bud neck, respectively), telomere and spindle spatially and temporally. These sub-cellular regions play important roles in various biological processes. In this work, we have collected all proteins identified to be localized on kinetochore, centrosome, midbody, telomere and spindle from two fungi (S. cerevisiae and S. pombe) and five animals, including C. elegans, D. melanogaster, X. laevis, M. musculus and H. sapiens based on the rationale of "Seeing is believing" (Bloom K et al., 2005). Through ortholog searches, the proteins potentially localized at these sub-cellular regions were detected in 144 eukaryotes. Then the integrated and searchable database MiCroKiTS - Midbody, Centrosome, Kinetochore, Telomere and Spindle has been established.
Country
<<<!!!<<< Significantly expanded physical protein interaction database is now available as IID - Integrated Interactions Database. It is 74% larger than I2D and includes annotation of tissue-specific interactions across 30 tissues. https://www.re3data.org/repository/r3d100010675 >>>!!!>>>
Country
ConsensusPathDB integrates interaction networks in humans (and in the model organisms - yeast and mouse) including binary and complex protein-protein, genetic, metabolic, signaling, gene regulatory and drug-target interactions, as well as biochemical pathways. Data originate from public resources for interactions and interactions curated from the literature. The interaction data are integrated in a complementary manner to avoid redundancies.
Country
NONCODE is an integrated knowledge database dedicated to non-coding RNAs (excluding tRNAs and rRNAs). Now, there are 16 species in NONCODE(human, mouse, cow, rat, chicken, fruitfly, zebrafish, celegans, yeast, Arabidopsis, chimpanzee, gorilla, orangutan, rhesus macaque, opossum and platypus).The source of NONCODE includes literature and other public databases. We searched PubMed using key words ‘ncrna’, ‘noncoding’, ‘non-coding’,‘no code’, ‘non-code’, ‘lncrna’ or ‘lincrna. We retrieved the new identified lncRNAs and their annotation from the Supplementary Material or web site of these articles. Together with the newest data from Ensembl , RefSeq, lncRNAdb and GENCODE were processed through a standard pipeline for each species.
TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner.
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> The main objective of our work is to understand the pathomechanisms of late onset neurodegenerative disorders such as Huntington's, Parkinson's, Alzheimer's and Machado Joseph disease and to develop causal therapies for them. The disease causing proteins of these illnesses have been identified, but their functions in the unaffected organism are mostly unknown. Here, we have developed a strategy combining library and matrix yeast two-hybrid screens to generate a highly connected PPI network for Huntington's disease (HD).
I2D (Interologous Interaction Database) is an on-line database of known and predicted mammalian and eukaryotic protein-protein interactions. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered "predictions". It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. I2D includes data for S. cerevisiae, C. elegans, D. melonogaster, R. norvegicus, M. musculus, and H. sapiens.
GermOnline 4.0 is a cross-species database gateway focusing on high-throughput expression data relevant for germline development, the meiotic cell cycle and mitosis in healthy versus malignant cells. The portal provides access to the Saccharomyces Genomics Viewer (SGV) which facilitates online interpretation of complex data from experiments with high-density oligonucleotide tiling microarrays that cover the entire yeast genome.
The UniPROBE (Universal PBM Resource for Oligonucleotide Binding Evaluation) database hosts data generated by universal protein binding microarray (PBM) technology on the in vitro DNA binding specificities of proteins. This initial release of the UniPROBE database provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ('words') of length k ('k-mers'), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. In total, the database currently hosts DNA binding data for 406 nonredundant proteins from a diverse collection of organisms, including the prokaryote Vibrio harveyi, the eukaryotic malarial parasite Plasmodium falciparum, the parasitic Apicomplexan Cryptosporidium parvum, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, mouse, and human. The database's web tools (on the right) include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences
Country
BCCM/MUCL is a generalist fungal culture collection of over 30000 filamentous fungi, yeasts and arbuscular mycorrhizal fungi including type, reference and test strains. It provides curated documentation and information on these bioresourced in its database. The collections activities include the distribution of its holdings, the accession of new material in its public, safe and patent domains, and services valorising its holdings and/or expertise to cultivate, isolate and identify fungal diversity in natural and anthropological ecosystems, agro-food (food and feed transformation and spoilage), and fungal-plant interactions.
The Wellcome Trust Sanger Institute is a charitably funded genomic research centre located in Hinxton, nine miles south of Cambridge in the UK. We study diseases that have an impact on health globally by investigating genomes. Building on our past achievements and based on priorities that exploit the unique expertise of our Faculty of researchers, we will lead global efforts to understand the biology of genomes. We are convinced of the importance of making this research available and accessible for all audiences. reduce global health burdens.
Candida Genome Database, a resource for genomic sequence data and gene and protein information for Candida albicans and related species. CGD is based on the Saccharomyces Genome Database. The Candida Genome Database (CGD) provides online access to genomic sequence data and manually curated functional information about genes and proteins of the human pathogen Candida albicans and related species. C. albicans is the best studied of the human fungal pathogens. It is a common commensal organism of healthy individuals, but can cause debilitating mucosal infections and life-threatening systemic infections, especially in immunocompromised patients. C. albicans also serves as a model organism for the study of other fungal pathogens.
Country
BCCM/IHEM is a fungal culture collection specialized in medical and veterinary mycology. About 16.000 strains of yeasts and moulds are available from all over the world: pathogens, allergenic species, strains producing mycotoxins, reference strains, teaching material, etc. It also comprises the Raymond Vanbreuseghem collection and the collection of Janssen Pharmaceutica. The BCCM/IHEM collection makes strains or their genomic DNA publicly available for medical, pharmaceutical and biological research, as well as for method validation, testing or educational purposes. Deposits of strains for public access are free of charge for the depositor. The collection also accept safe and patent deposits, and offers a range of services including trainings in mycology and identifications of strains. Moreover, BCCM/IHEM has expertise in fungal taxonomy, in MALDI-TOF MS identification of moulds and yeasts as well as in genomics (whole genome sequencing of fungal strains, phylogenomics, phylogenetics).
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information
Giardia lamblia is a significant, environmentally transmitted, human pathogen and an amitochondriate protist. It is a major contributor to the enormous worldwide burden of human diarrheal diseases, yet the basic biology of this parasite is not well understood. No virulence factor has been identified. The Giardia lamblia genome contains only 12 million base pairs distributed onto five chromosomes. Its analysis promises to provide insights about the origins of nuclear genome organization, the metabolic pathways used by parasitic protists, and the cellular biology of host interaction and avoidance of host immune systems. Since the divergence of Giardia lamblia lies close to the transition between eukaryotes and prokaryotes in universal ribosomal RNA phylogenies, it is a valuable, if not unique, model for gaining basic insights into genetic innovations that led to formation of eukaryotic cells. In evolutionary terms, the divergence of this organism is at least twice as ancient as the common ancestor for yeast and man. A detailed study of its genome will provide insights into an early evolutionary stage of eukaryotic chromosome organization as well as other aspects of the prokaryotic / eukaryotic divergence.
Country
ALEXA is a microarray design platform for 'alternative expression analysis'. This platform facilitates the design of expression arrays for analysis of mRNA isoforms generated from a single locus by the use of alternative transcription initiation, splicing and polyadenylation sites. We use the term 'ALEXA' to describe a collection of novel genomic methods for 'alternative expression' analysis. 'Alternative expression' refers to the identification and quantification of alternative mRNA transcripts produced by alternative transcript initiation, alternative splicing and alternative polyadenylation. This website provides supplementary materials, source code and other downloads for recent publications describing our studies of alternative expression (AE). Most recently we have developed a method, 'ALEXA-Seq' and associated resources for alternative expression analysis by massively parallel RNA sequencing.