Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 4 result(s)
Vivli is a non-profit organization working to advance human health through the insights and discoveries gained by sharing and analyzing data. It is home to an independent global data-sharing and analytics platform which serves all elements of the international research community. The platform includes a data repository, in-depth search engine and cloud-based analytics, and harmonizes governance, policy and processes to make sharing data easier. Vivli acts as a neutral broker between data contributor and data user and the wider data sharing community.
<<<!!!<<< Bacterial (BCSDB) and Plant&Fungal (PFCSDB) carbohydrate structure databases have been merged into a single database, CSDB >>>!!!>>> This database is aimed at provision of structural, bibliographic, taxonomic and related information on plant and fungal carbohydrate structures. The main source of data is a retrospective literature analysis. About 4000 records were imported from CCSD (Carbbank, University of Georgia, Athens, plus NMR data from corresponding publications; structures published before 1995) with subsequent manual curation and approval. The scope is "plant and fungal carbohydrates" and is expected to cover nearly all structures of this class published until 2013. Plant and fungal means that a structure has been found in plants or fungi or obtained by modification of those found in these domains. Carohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds, in which at least one residue is a sugar or its derivative.
>>>!!!Bacterial (BCSDB) and Plant&Fungal (PFCSDB) carbohydrate structure databases have been merged into a single database, CSDB!!!<<< BCSDB database is aimed at provision of structural, bibliographic, taxonomic and related information on bacterial carbohydrate structures. Two key points of this service are: covering - is above 90% in the scope of bacterial carbohydrates. This means the negative search answer remains valuable scientific information. And consistence - we manually check the data, and aim at hight quality error-free content. The main source of data is a retrospective literature analysis. About 25% of data were imported from CCSD (Carbbank, ceased in 1997, University of Georgia, Athens; structures published before 1995) with subsequent manual curation and approval. Current coverage is displayed in red on the top of the left menu. The time lag between publication of new data and their deposition ~ 1 year. The scope is "bacterial carbohydrates" and covers nearly all structures of this class published up to 2016. Bacterial means that a structure has been found in bacteria or obtained by modification of those found in bacteria. Carohydrate means a structure composed of any residues linked by glycosidic, ester, amidic, ketal, phospho- or sulpho-diester bonds, in which at least one residue is a sugar or its derivative.
The NCBI database of Genotypes and Phenotypes archives and distributes the results of studies that have investigated the interaction of genotype and phenotype, including genome-wide association studies, medical sequencing, molecular diagnostic assays, and association between genotype and non-clinical traits. The database provides summaries of studies, the contents of measured variables, and original study document text. dbGaP provides two types of access for users, open and controlled. Through the controlled access, users may access individual-level data such as phenotypic data tables and genotypes.