Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 12 result(s)
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> This page is not longer active, please use www.marine-data.de instead. Our data portal data.awi.de offers an integrative one-stop shop framework for discovering AWI research platforms including devices and sensors, tracklines, field reports, peer-reviewed publications, GIS products and mostly important data and data products archived in PANGAEA.
PISCO researchers collect biological, chemical, and physical data about ocean ecosystems in the nearshore portions of the California Current Large Marine Ecosystem. Data are archived and used to create summaries and graphics, in order to ensure that the data can be used and understood by a diverse audience of managers, policy makers, scientists and the general public.
The Land Processes Distributed Active Archive Center (LP DAAC) is a component of NASAs Earth Observing System (EOS) Data and Information System (EOSDIS). LP DAAC processes, archives, and distributes land data and products derived from the EOS sensors. Located just outside Sioux Falls, South Dakota, the LP DAAC handles data from three EOS instruments aboard two operational satellite platforms: ASTER and MODIS from Terra, and MODIS from Aqua. ASTER data are received, processed, distributed, and archived while MODIS land products are received, distributed, and archived.
The Ozone Mapping and Profiler Suite measures the ozone layer in our upper atmosphere—tracking the status of global ozone distributions, including the ‘ozone hole.’ It also monitors ozone levels in the troposphere, the lowest layer of our atmosphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS’s measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet Index, a guide to safe levels of sunlight exposure. OMPS has two sensors, both new designs, composed of three advanced hyperspectralimaging spectrometers.The three spectrometers: a downward-looking nadir mapper, nadir profiler and limb profiler. The entire OMPS suite currently fly on board the Suomi NPP spacecraft and are scheduled to fly on the JPSS-2 satellite mission. NASA will provide the OMPS-Limb profiler.
IEEE DataPort™ is a universally accessible online data repository created, owned, and supported by IEEE, the world’s largest technical professional organization. It enables all researchers and data owners to upload their dataset without cost. IEEE DataPort makes data available in three ways: standard datasets, open access datasets, and data competition datasets. By default, all "standard" datasets that are uploaded are accessible to paid IEEE DataPort subscribers. Data owners have an option to pay a fee to make their dataset “open access”, so it is available to all IEEE DataPort users (no subscription required). The third option is to host a "data competition" and make a dataset accessible for free for a specific duration with instructions for the data competition and how to participate. IEEE DataPort provides workflows for uploading data, searching, and accessing data, and initiating or participating in data competitions. All datasets are stored on Amazon AWS S3, and each dataset uploaded by an individual can be up to 2TB in size. Institutional subscriptions are available to the platform to make it easy for all members of a given institution to utilize the platform and upload datasets.
Country
The MOSES Data Discovery Portal is the central component of the MOSES data management infrastructure. It holds the metadata of MOSES campaigns, sensors and data and enables high-performance data searches. In addition, it provides access to the decentral data repositories and infrastructures of the participating Helmholtz centers where MOSES data is stored.
IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth's interior.
The Argo observational network consists of a fleet of 3000+ profiling autonomous floats deployed by about a dozen teams worldwide. WHOI has built about 10% of the global fleet. The mission lifetime of each float is about 4 years. During a typical mission, each float reports a profile of the upper ocean every 10 days. The sensors onboard record fundamental physical properties of the ocean: temperature and conductivity (a measure of salinity) as a function of pressure. The depth range of the observed profile depends on the local stratification and the float's mechanical ability to adjust it's buoyancy. The majority of Argo floats report profiles between 1-2 km depth. At each surfacing, measurements of temperature and salinity are relayed back to shore via satellite. Telemetry is usually received every 10 days, but floats at high-latitudes which are iced-over accumulate their data and transmit the entire record the next time satellite contact is established. With current battery technology, the best performing floats last 6+ years and record over 200 profiles.
Funded by the National Science Foundation (NSF) and proudly operated by Battelle, the National Ecological Observatory Network (NEON) program provides open, continental-scale data across the United States that characterize and quantify complex, rapidly changing ecological processes. The Observatory’s comprehensive design supports greater understanding of ecological change and enables forecasting of future ecological conditions. NEON collects and processes data from field sites located across the continental U.S., Puerto Rico, and Hawaii over a 30-year timeframe. NEON provides free and open data that characterize plants, animals, soil, nutrients, freshwater, and the atmosphere. These data may be combined with external datasets or data collected by individual researchers to support the study of continental-scale ecological change.
The World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT, offers scientists and the general public free access (in the sense of a “one-stop shop”) to a continuously growing collection of atmosphere-related satellite-based data sets (ranging from raw to value added data), information products and services. Focus is on atmospheric trace gases, aerosols, dynamics, radiation, and cloud physical parameters. Complementary information and data on surface parameters (e.g. vegetation index, surface temperatures) is also provided. This is achieved either by giving access to data stored at the data center or by acting as a portal containing links to other providers.
Vast networks of meteorological sensors ring the globe measuring atmospheric state variables, like temperature, humidity, wind speed, rainfall, and atmospheric carbon dioxide, on a continuous basis. These measurements serve earth system science by providing inputs into models that predict weather, climate and the cycling of carbon and water. And, they provide information that allows researchers to detect the trends in climate, greenhouse gases, and air pollution. The eddy covariance method is currently the standard method used by biometeorologists to measure fluxes of trace gases between ecosystems and atmosphere.