Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 19 result(s)
The POES satellite system offers the advantage of daily global coverage, by making nearly polar orbits 14 times per day approximately 520 miles above the surface of the Earth. The Earth's rotation allows the satellite to see a different view with each orbit, and each satellite provides two complete views of weather around the world each day. NOAA partners with the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) to constantly operate two polar-orbiting satellites – one POES and one European polar-orbiting satellite called Metop. NOAA's Polar Orbiting Environmental Satellites (POES) carry a suite of instruments that measure the flux of energetic ions and electrons at the altitude of the satellite. This environment varies as a result of solar and geomagnetic activity. Beginning with the NOAA-15 satellite, an upgraded version of the Space Environment Monitor (SEM-2) has been flown.
Satellite-tracked drifting buoys ("drifters") collect measurements of upper ocean currents and sea surface temperatures (SST) around the world as part of the Global Drifter Program. Drifter locations are estimated from 16-20 satellite fixes per day, per drifter. The Drifter Data Assembly Center (DAC) at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML) assembles these raw data, applies quality control procedures, and interpolates them via kriging to regular six-hour intervals. The raw observations and processed data are archived at AOML and at the Marine Environmental Data Services (MEDS) in Canada. Two types of data are available: "metadata" contains deployment location and time, time of drogue (sea anchor) loss, date of final transmission, etc. for each drifter. "Interpolated data" contains the quality-controlled, interpolated drifter observations.
The GOES Space Environment Monitor archive is an important component of the National Space Weather Program --a interagency program to provide timely and reliable space environment observations and forecasts. GOES satellites carry onboard a Space Environment Monitor subsystem that measures X-rays, Energetic Particles and Magnetic Field at the Spacecraft.
The Land Processes Distributed Active Archive Center (LP DAAC) is a component of NASAs Earth Observing System (EOS) Data and Information System (EOSDIS). LP DAAC processes, archives, and distributes land data and products derived from the EOS sensors. Located just outside Sioux Falls, South Dakota, the LP DAAC handles data from three EOS instruments aboard two operational satellite platforms: ASTER and MODIS from Terra, and MODIS from Aqua. ASTER data are received, processed, distributed, and archived while MODIS land products are received, distributed, and archived.
The JPL Tropical Cyclone Information System (TCIS) was developed to support hurricane research. There are three components to TCIS; a global archive of multi-satellite hurricane observations 1999-2010 (Tropical Cyclone Data Archive), North Atlantic Hurricane Watch and ASA Convective Processes Experiment (CPEX) aircraft campaign. Together, data and visualizations from the real time system and data archive can be used to study hurricane process, validate and improve models, and assist in developing new algorithms and data assimilation techniques.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
The Ozone Mapping and Profiler Suite measures the ozone layer in our upper atmosphere—tracking the status of global ozone distributions, including the ‘ozone hole.’ It also monitors ozone levels in the troposphere, the lowest layer of our atmosphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS’s measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet Index, a guide to safe levels of sunlight exposure. OMPS has two sensors, both new designs, composed of three advanced hyperspectralimaging spectrometers.The three spectrometers: a downward-looking nadir mapper, nadir profiler and limb profiler. The entire OMPS suite currently fly on board the Suomi NPP spacecraft and are scheduled to fly on the JPSS-2 satellite mission. NASA will provide the OMPS-Limb profiler.
AIRS moves climate research and weather prediction into the 21st century. AIRS is one of six instruments on board the Aqua satellite, part of the NASA Earth Observing System. AIRS along with its partner microwave instrument the Advanced Microwave Sounding Unit AMSU-A, represents the most advanced atmospheric sounding system ever deployed in space. Together these instruments observe the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases.
The International Ocean Discovery Program’s (IODP) Gulf Coast Repository (GCR) is located in the Research Park on the Texas A&M University campus in College Station, Texas. This repository stores DSDP, ODP, and IODP cores from the Pacific Ocean, the Caribbean Sea and Gulf of Mexico, and the Southern Ocean. A satellite repository at Rutgers University houses New Jersey/Delaware land cores 150X and 174AX.
IRSA is chartered to curate the calibrated science products from NASAs infrared and sub-millimeter missions, including five major large-area/all-sky surveys. IRSA exploits a re-useable architecture to deploy cost-effective archives for customers, including: the Spitzer Space Telescope; the 2MASS and IRAS all-sky surveys; and multi-mission datasets such as COSMOS, WISE and Planck mission
NOAA's National Centers for Environmental Information (NCEI) are responsible for hosting and providing public access to one of the most significant archives for environmental data on Earth with over 20 petabytes of comprehensive atmospheric, coastal, oceanic, and geophysical data. NCEI headquarters are located in Asheville, North Carolina. Most employees work in the four main locations, but apart from those locations, NCEI has employees strategically located throughout the United States. The main locations are Cooperative Institute for Climate and Satellites–North Carolina (CICS-NC) at Asheville, North Carolina, Cooperative Institute for Research in Environmental Sciences (CIRES) at Boulder Colorado, Cooperative Institute for Climate and Satellites–Maryland (CICS-MD) at Silver Spring Maryland and Stennis Space Center, Mississippi.
The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for processing, archiving, and distribution of NASA Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry.The ASDC specializes in atmospheric data important to understanding the causes and processes of global climate change and the consequences of human activities on the climate.
Alaska Ocean Observing System (AOOS) provides ocean and coastal observations data. The AOOS is governed by the Integrated Ocean Observing System (IOOS) which is a partnership among federal, regional, academic and private sector groups. The Ocean Data Explorer contains scientific and management information including real-time sensor feeds, operational oceanographic and atmospheric models, satellite observations and GIS data sets that describe the biological, chemical and physical characteristics of Alaska and its surrounding waters. This map offers many new updated features that build upon the existing data system.
WDC for Meteorology, Asheville acquires, catalogues, and archives data and makes them available to requesters in the international scientific community. Data are exchanged with counterparts, WDC for Meteorology, Obninsk and WDC for Meteorology, Beijing as necessary to improve access. Special research data sets prepared under international programs such as the IGY, World Climate Program (WCP), Global Atmospheric Research Program (GARP), etc., are archived and made available to the research community. All data and special data sets contributed to the WDC are available to scientific investigators without restriction. Data are available from 1755 to 2015.
The Global Hydrology Resource Center (GHRC) provides both historical and current Earth science data, information, and products from satellite, airborne, and surface-based instruments. GHRC acquires basic data streams and produces derived products from many instruments spread across a variety of instrument platforms.
The Index to Marine and Lacustrine Geological Samples is a tool to help scientists locate and obtain geologic material from sea floor and lakebed cores, grabs, and dredges archived by participating institutions around the world. Data and images related to the samples are prepared and contributed by the institutions for access via the IMLGS and long-term archive at NGDC. Before proposing research on any sample, please contact the curator for sample condition and availability. A consortium of Curators guides the IMLGS, maintained on behalf of the group by NGDC, since 1977.
<<<!!!<<< The demand for high-value environmental data and information has dramatically increased in recent years. To improve our ability to meet that demand, NOAA’s former three data centers—the National Climatic Data Center, the National Geophysical Data Center, and the National Oceanographic Data Center, which includes the National Coastal Data Development Center—have merged into the National Centers for Environmental Information (NCEI). >>>!!!>>> The NOAA National Centers for Environmental Information (formerly the National Geophysical Data Center) provide scientific stewardship, products and services for sea floor and lakebed data, including geophysics (gravity, magnetics, seismic reflection, bathymetry, water column sonar), and data derived from sediment and rock samples. NCEI compiles coastal and global digital elevation models, high-resolution models for tsunami inundation studies, provides stewardship for NOS data supporting charts and navigation, and is the US national long-term archive for MGG data
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
The National Science Foundation (NSF) Ultraviolet (UV) Monitoring Network provides data on ozone depletion and the associated effects on terrestrial and marine systems. Data are collected from 7 sites in Antarctica, Argentina, United States, and Greenland. The network is providing data to researchers studying the effects of ozone depletion on terrestrial and marine biological systems. Network data is also used for the validation of satellite observations and for the verification of models describing the transfer of radiation through the atmosphere.