Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 15 result(s)
The ProteomeXchange consortium has been set up to provide a single point of submission of MS proteomics data to the main existing proteomics repositories, and to encourage the data exchange between them for optimal data dissemination. Current members accepting submissions are: The PRIDE PRoteomics IDEntifications database at the European Bioinformatics Institute focusing mainly on shotgun mass spectrometry proteomics data PeptideAtlas/PASSEL focusing on SRM/MRM datasets.
FungiDB belongs to the EuPathDB family of databases and is an integrated genomic and functional genomic database for the kingdom Fungi. FungiDB was first released in early 2011 as a collaborative project between EuPathDB and the group of Jason Stajich (University of California, Riverside). At the end of 2015, FungiDB was integrated into the EuPathDB bioinformatic resource center. FungiDB integrates whole genome sequence and annotation and also includes experimental and environmental isolate sequence data. The database includes comparative genomics, analysis of gene expression, and supplemental bioinformatics analyses and a web interface for data-mining.
Country
MyTardis began at Monash University to solve the problem of users needing to store large datasets and share them with collaborators online. Its particular focus is on integration with scientific instruments, instrument facilities and research lab file storage. Our belief is that the less effort a researcher has to expend safely storing data, the more likely they are to do so. This approach has flourished with MyTardis capturing data from areas such as protein crystallography, electron microscopy, medical imaging and proteomics and with deployments at Australian institutions such as University of Queensland, RMIT, University of Sydney and the Australian Synchrotron. Data access via https://www.massive.org.au/ and https://store.erc.monash.edu.au/experiment/view/104/ and see 'remarks'.
The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Please, check the reference page to find articles describing the DIP database in greater detail. The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information
Country
The Swedish Human Protein Atlas project has been set up to allow for a systematic exploration of the human proteome using Antibody-Based Proteomics. This is accomplished by combining high-throughput generation of affinity-purified antibodies with protein profiling in a multitude of tissues and cells assembled in tissue microarrays. Confocal microscopy analysis using human cell lines is performed for more detailed protein localization. The program hosts the Human Protein Atlas portal with expression profiles of human proteins in tissues and cells. The main objective of the resource centre is to produce specific antibodies to human target proteins using a high-throughput production method involving the cloning and protein expression of Protein Epitope Signature Tags (PrESTs). After purification, the antibodies are used to study expression profiles in cells and tissues and for functional analysis of the corresponding proteins in a wide range of platforms.
METLIN represents the largest MS/MS collection of data with the database generated at multiple collision energies and in positive and negative ionization modes. The data is generated on multiple instrument types including SCIEX, Agilent, Bruker and Waters QTOF mass spectrometers.
The goals of the Drosophila Genome Center are to finish the sequence of the euchromatic genome of Drosophila melanogaster to high quality and to generate and maintain biological annotations of this sequence. In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community.
LINCS Data Portal provides access to LINCS data from various sources. The program has six Data and Signature Generation Centers: Drug Toxicity Signature Generation Center, HMS LINCS Center, LINCS Center for Transcriptomics, LINCS Proteomic Characterization Center for Signaling and Epigenetics, MEP LINCS Center, and NeuroLINCS Center.
virus mentha archives evidence about viral interactions collected from different sources and presents these data in a complete and comprehensive way. Its data comes from manually curated protein-protein interaction databases that have adhered to the IMEx consortium. virus mentha is a resource that offers a series of tools to analyse selected proteins in the context of a network of interactions. Protein interaction databases archive protein-protein interaction (PPI) information from published articles. However, no database alone has sufficient literature coverage to offer a complete resource to investigate "the interactome". virus mentha's approach generates every week a consistent interactome (graph). Most importantly, the procedure assigns to each interaction a reliability score that takes into account all the supporting evidence. virus mentha offers direct access to viral families such as: Orthomyxoviridae, Orthoretrovirinae and Herpesviridae plus, it offers the unique possibility of searching by host organism. The website and the graphical application are designed to make the data stored in virus mentha accessible and analysable to all users.virus mentha superseeds VirusMINT. The Source databases are: MINT, DIP, IntAct, MatrixDB, BioGRID.
Country
The Small Molecule Pathway Database (SMPDB) contains small molecule pathways found in humans, which are presented visually. All SMPDB pathways include information on the relevant organs, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Accompanying data includes detailed descriptions and references, providing an overview of the pathway, condition or processes depicted in each diagram.
DEPOD - the human DEPhOsphorylation Database (version 1.1) is a manually curated database collecting human active phosphatases, their experimentally verified protein and non-protein substrates and dephosphorylation site information, and pathways in which they are involved. It also provides links to popular kinase databases and protein-protein interaction databases for these phosphatases and substrates. DEPOD aims to be a valuable resource for studying human phosphatases and their substrate specificities and molecular mechanisms; phosphatase-targeted drug discovery and development; connecting phosphatases with kinases through their common substrates; completing the human phosphorylation/dephosphorylation network.
In early 2010 we updated the site to facilitate more rapid transfer of our data to the public database and focus our efforts on the core mission of providing expression pattern images to the research community. The original database https://www.fruitfly.org/index.html reproduced functions available on FlyBase, complicating our updates by the requirement to re-synchronize with FlyBase updates. Our expression reports on the new site still link to FlyBase gene reports, but we no longer reproduce FlyBase functions and therefore can update expression data on an ongoing basis instead of more infrequent major releases. All the functions relating to the expression patterns remain and we soon will add an option to search expression patterns by image similarity, in addition to annotation term searches. In a transitional phase we will leave both the old and the new sites up, but the newer data (post Release 2) will appear only on the new website. We welcome any feedback or requests for additional features. - The goals of the Drosophila Genome Center are to finish the sequence of the euchromatic genome of Drosophila melanogaster to high quality and to generate and maintain biological annotations of this sequence. In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community.
InnateDB is a publicly available database of the genes, proteins, experimentally-verified interactions and signaling pathways involved in the innate immune response of humans, mice and bovines to microbial infection. The database captures an improved coverage of the innate immunity interactome by integrating known interactions and pathways from major public databases together with manually-curated data into a centralised resource. The database can be mined as a knowledgebase or used with our integrated bioinformatics and visualization tools for the systems level analysis of the innate immune response.