Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 14 result(s)
DDBJ; DNA Data Bank of Japan is the sole nucleotide sequence data bank in Asia, which is officially certified to collect nucleotide sequences from researchers and to issue the internationally recognized accession number to data submitters.Since we exchange the collected data with EMBL-Bank/EBI; European Bioinformatics Institute and GenBank/NCBI; National Center for Biotechnology Information on a daily basis, the three data banks share virtually the same data at any given time. The virtually unified database is called "INSD; International Nucleotide Sequence Database DDBJ collects sequence data mainly from Japanese researchers, but of course accepts data and issue the accession number to researchers in any other countries.
The NCBI Nucleotide database collects sequences from such sources as GenBank, RefSeq, TPA, and PDB. Sequences collected relate to genome, gene, and transcript sequence data, and provide a foundation for research related to the biomedical field.
GenBank® is a comprehensive database that contains publicly available nucleotide sequences for almost 260 000 formally described species. These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.
TPA is a database that contains sequences built from the existing primary sequence data in GenBank. TPA records are retrieved through the Nucleotide Database and feature information on the sequence, how it was cataloged, and proper way to cite the sequence information.
Country
The China National GeneBank database (CNGBdb) is a unified platform for biological big data sharing and application services. CNGBdb has now integrated a large amount of internal and external biological data from resources such as CNGB, NCBI, and the EBI. There are several sub-databases in CNGBdb, including literature, variation, gene, genome, protein, sequence, organism, project, sample, experiment, run, and assembly. Based on underlying big data and cloud computing technologies, it provides various data services, including archive, analysis, knowledge search, and management authorization of biological data. CNGBdb adopts data structures and standards of international omics, health, and medicine, such as The International Nucleotide Sequence Database Collaboration (INSDC), The Global Alliance for Genomics and Health GA4GH (GA4GH), Global Genome Biodiversity Network (GGBN), American College of Medical Genetics and Genomics (ACMG), and constructs standardized data and structures with wide compatibility. All public data and services provided by CNGBdb are freely available to all users worldwide. CNGB Sequence Archive (CNSA) is the bionomics data repository of CNGBdb. CNGB Sequence Archive (CNSA) is a convenient and efficient archiving system of multi-omics data in life science, which provides archiving services for raw sequencing reads and further analyzed results. CNSA follows the international data standards for omics data, and supports online and batch submission of multiple data types such as Project, Sample, Experiment/Run, Assembly, Variation, Metabolism, Single cell, and Sequence. Moreover, CNSA has achieved the correlation of sample entities, sample information, and analyzed data on some projects. Its data submission service can be used as a supplement to the literature publishing process to support early data sharing.CNGB Sequence Archive (CNSA) is a convenient and efficient archiving system of multi-omics data in the life science of CNGBdb, which provides archiving services for raw sequencing reads and further analyzed results. CNSA follows the international data standards for omics data, and supports online and batch submission of multiple data types such as Project, Sample, Experiment/Run, Assembly, Variation, Metabolism, Single cell, Sequence. Its data submission service can be used as a supplement to the literature publishing process to support early data sharing.
This Web resource provides data and information relevant to SARS coronavirus. It includes links to the most recent sequence data and publications, to other SARS related resources, and a pre-computed alignment of genome sequences from various isolates. In order to provide free and easy access to genome and protein sequences and associated metadata from the SARS-CoV-2, we created a dedicated Severe acute respiratory syndrome coronavirus 2 data hub. You can access the Results Table on SARS-CoV-2 data hub, by pressing "RefSeq genomes", "nucleotide" or "protein" links on announcement banner located on NCBI home page, in "Find data" navigation menu or using "Up-to-date SARS-CoV-2" shortcut button in "Search by virus" form. SARS-CoV-2 sequences is part of NCBI Virus https://www.re3data.org/repository/r3d100014322
dbEST is a division of GenBank that contains sequence data and other information on "single-pass" cDNA sequences, or "Expressed Sequence Tags", from a number of organisms. Expressed Sequence Tags (ESTs) are short (usually about 300-500 bp), single-pass sequence reads from mRNA (cDNA). Typically they are produced in large batches. They represent a snapshot of genes expressed in a given tissue and/or at a given developmental stage. They are tags (some coding, others not) of expression for a given cDNA library. Most EST projects develop large numbers of sequences. These are commonly submitted to GenBank and dbEST as batches of dozens to thousands of entries, with a great deal of redundancy in the citation, submitter and library information. To improve the efficiency of the submission process for this type of data, we have designed a special streamlined submission process and data format. dbEST also includes sequences that are longer than the traditional ESTs, or are produced as single sequences or in small batches. Among these sequences are products of differential display experiments and RACE experiments. The thing that these sequences have in common with traditional ESTs, regardless of length, quality, or quantity, is that there is little information that can be annotated in the record. If a sequence is later characterized and annotated with biological features such as a coding region, 5'UTR, or 3'UTR, it should be submitted through the regular GenBank submissions procedure (via BankIt or Sequin), even if part of the sequence is already in dbEST. dbEST is reserved for single-pass reads. Assembled sequences should not be submitted to dbEST. GenBank will accept assembled EST submissions for the forthcoming TSA (Transcriptome Shotgun Assembly) division. The individual reads which make up the assembly should be submitted to dbEST, the Trace archive or the Short Read Archive (SRA) prior to the submission of the assemblies.
Country
The Chickpea Transcriptome Database (CTDB) has been developed with the view to provide most comprehensive information about the chickpea transcriptome, the most relevant part of the genome. The database contains various information and tools for transcriptome sequence, functional annotation, conserved domain(s), transcription factor families, molecular markers (microsatellites and single nucleotide polymorphisms), Comprehensive gene expression and comparative genomics with other legumes. The database is a freely available resource, which provides user scientists/breeders a portal to search, browse and query the data to facilitate functional and applied genomics research in chickpea and other legumes. The current release of database provides transcriptome sequence from cultivated (Cicer arietinum desi (ICC4958) and kabuli (ICCV2)) and wild (Cicer reticulatum, PI489777) chickpea genotypes.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
PHI-base is a web-accessible database that catalogues experimentally verified pathogenicity, virulence and effector genes from fungal, Oomycete and bacterial pathogens, which infect animal, plant, fungal and insect hosts. PHI-base is therfore an invaluable resource in the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. In collaboration with the FRAC team, PHI-base also includes antifungal compounds and their target genes.
The Conserved Domain Database is a resource for the annotation of functional units in proteins. Its collection of domain models includes a set curated by NCBI, which utilizes 3D structure to provide insights into sequence/structure/function relationships
<<<!!!<<<Noticed 26.08.2020: The NCI CBIIT instance of the CGAP no longer exist on this website. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer has a new home at the NCI-funded Institute for Systems Biology Cancer Genomics Cloud available at the following location: https://mitelmandatabase.isb-cgc.org>>>!!!>>>
The 1000 Genomes Project is an international collaboration to produce an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts. This resource will support genome-wide association studies and other medical research studies. The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide. The International Genome Sample Resource (IGSR) has been established at EMBL-EBI to continue supporting data generated by the 1000 Genomes Project, supplemented with new data and new analysis.