Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 18 result(s)
A repository for high-quality gene models produced by the manual annotation of vertebrate genomes. The final update of Vega, version 68, was released in February 2017 and is now archived at vega.archive.ensembl.org. We plan to maintain this resource until Feb 2020.
Established by the HLA Informatics Group of the Anthony Nolan Research Institute, IPD provides a centralized system for studying the immune system's polymorphism in genes. The IPD maintains databases concerning the sequences of human Killer-cell Immunoglobulin-like Receptors (KIR), sequences of the major histocompatibility complex in a number of species, human platelet antigens (HPA), and tumor cell lines. Each subject has related, credible news, current research and publications, and a searchable database for highly specific, research grade genetic information.
Project Tycho is a repository for global health, particularly disease surveillance data. Project Tycho currently includes data for 92 notifiable disease conditions in the US, and up to three dengue-related conditions for 99 countries. Project Tycho has compiled data from reputable sources such as the US Centers for Disease Control, the World Health Organization, and National health agencies for countries around the world. Project Tycho datasets are highly standardized and have rich metadata to improve access, interoperability, and reuse of global health data for research and innovation.
BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
The COVID-19 Data Portal was launched in April 2020 to bring together relevant datasets for sharing and analysis in an effort to accelerate coronavirus research. It enables researchers to upload, access and analyse COVID-19 related reference data and specialist datasets as part of the wider European COVID-19 Data Platform.
ClinicalTrials.gov is a website and online database of clinical research studies and information about their results. The purpose of ClinicalTrials.gov is to provide information about clinical research studies to the public, researchers, and health care professionals. The U.S. government does not review or approve the safety and science of all studies listed on this website.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.
The International Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) Guide to PHARMACOLOGY is an expert-curated resource of ligand-activity-target relationships, the majority of which come from high-quality pharmacological and medicinal chemistry literature. It is intended as a “one-stop shop” portal to pharmacological information and its main aim is to provide a searchable database with quantitative information on drug targets and the prescription medicines and experimental drugs that act on them. In future versions we plan to add resources for education and training in pharmacological principles and techniques along with research guidelines and overviews of key topics. We hope that the IUPHAR/BPS Guide to PHARMACOLOGY (abbreviated as GtoPdb) will be useful for researchers and students in pharmacology and drug discovery and provide the general public with accurate information on the basic science underlying drug action.
The ENCODE Encyclopedia organizes the most salient analysis products into annotations, and provides tools to search and visualize them. The Encyclopedia has two levels of annotations: Integrative-level annotations integrate multiple types of experimental data and ground level annotations. Ground-level annotations are derived directly from the experimental data, typically produced by uniform processing pipelines.
JHU has stopped collecting data as of 03/10/2023 After three years of around-the-clock tracking of COVID-19 data from around the world, Johns Hopkins has discontinued the Coronavirus Resource Center’s operations. The site’s two raw data repositories will remain accessible for information collected from 1/22/20 to 3/10/23 on cases, deaths, vaccines, testing and demographics. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Johns Hopkins experts in global public health, infectious disease, and emergency preparedness have been at the forefront of the international response to COVID-19. This website is a resource to help advance the understanding of the virus, inform the public, and brief policymakers in order to guide a response, improve care, and save lives. All data collected and displayed are made freely available through a GitHub repository https://github.com/CSSEGISandData/COVID-19, along with the feature layers of the dashboard, which are now included in the ESRI Living Atlas: https://livingatlas.arcgis.com/en/home/
Country
MyTardis began at Monash University to solve the problem of users needing to store large datasets and share them with collaborators online. Its particular focus is on integration with scientific instruments, instrument facilities and research lab file storage. Our belief is that the less effort a researcher has to expend safely storing data, the more likely they are to do so. This approach has flourished with MyTardis capturing data from areas such as protein crystallography, electron microscopy, medical imaging and proteomics and with deployments at Australian institutions such as University of Queensland, RMIT, University of Sydney and the Australian Synchrotron. Data access via https://www.massive.org.au/ and https://store.erc.monash.edu.au/experiment/view/104/ and see 'remarks'.
GENCODE is a scientific project in genome research and part of the ENCODE (ENCyclopedia Of DNA Elements) scale-up project. The GENCODE consortium was initially formed as part of the pilot phase of the ENCODE project to identify and map all protein-coding genes within the ENCODE regions (approx. 1% of Human genome). Given the initial success of the project, GENCODE now aims to build an “Encyclopedia of genes and genes variants” by identifying all gene features in the human and mouse genome using a combination of computational analysis, manual annotation, and experimental validation, and annotating all evidence-based gene features in the entire human genome at a high accuracy.
The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is a team of researchers, data specialists and computer system developers who are supporting the development of a data management system to store scientific data generated by Gulf of Mexico researchers. The Master Research Agreement between BP and the Gulf of Mexico Alliance that established the Gulf of Mexico Research Initiative (GoMRI) included provisions that all data collected or generated through the agreement must be made available to the public. The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) is the vehicle through which GoMRI is fulfilling this requirement. The mission of GRIIDC is to ensure a data and information legacy that promotes continual scientific discovery and public awareness of the Gulf of Mexico Ecosystem.