Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 25 result(s)
NSIDC offers hundreds of scientific data sets for research, focusing on the cryosphere and its interactions. Data are from satellites and field observations. All data are free of charge.
The Greenland Climate Network provides year-round data on the climate of Greenland's ice sheet. These data are available to researchers by request through the Greenland Climate Network Data Request Web page. GC-Net data, previously hosted by CIRES, have now been moved to WSL’s Envidat data repository. The Geological Survey of Denmark and Greenland (GEUS) in Copenhagen, has been appointed to the continuation of climate monitoring at the GC-Net sites (https://eng.geus.dk/about/news/news-archive/2020/december/geus-takes-over-american-climate-stations-on-the-greenland-ice-sheet). The new GC-Net data will be distributed through the PROMICE website (https://www.promice.org/).
Climate Data Record (CDR) is a time series of measurements of sufficient length, consistency and continuity to determine climate variability and change. The fundamental CDRs include sensor data, such as calibrated radiances and brightness temperatures, that scientists have improved and quality-controlled along with the data used to calibrate them. The thematic CDRs include geophysical variables derived from the fundamental CDRs, such as sea surface temperature and sea ice concentration, and they are specific to various disciplines.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
>>>>!!!<<<<As of March 28, 2016, the 'NSF Arctic Data Center' will serve as the current repository for NSF-funded Arctic data. The ACADIS Gateway http://www.aoncadis.org is no longer accepting data submissions. All data and metadata in the ACADIS system have been transferred to the NSF Arctic Data Center system. There is no need for you to resubmit existing data. >>>>!!!<<<< ACADIS is a repository for Arctic research data to provide data archival, preservation and access for all projects funded by NSF's Arctic Science Program (ARC). Data include long-term observational timeseries, local, regional, and system-scale research from many diverse domains. The Advanced Cooperative Arctic Data and Information Service (ACADIS) program includes data management services.
NASA funded OpenAltimetry facilitates the advanced discovery, processing, and visualization services for ICESat and ICESat-2 altimeter data.
CESM is a fully-coupled, community, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states.
The Alaska Climate Research Center archives and provides digital climate records, climate statistics, and monthly weather summaries on Alaska and the polar regions. The Alaska Climate Research Center is part of the Geophysical Institute at the University of Alaska Fairbanks.
Paleoclimatology data are derived from natural sources such as tree rings, ice cores, corals, and ocean and lake sediments. These proxy climate data extend the archive of weather and climate information hundreds to millions of years. The data include geophysical or biological measurement time series and some reconstructed climate variables such as temperature and precipitation. NCEI provides the paleoclimatology data and information scientists need to understand natural climate variability and future climate change. We also operate the World Data Center for Paleoclimatology, which archives and distributes data contributed by scientists around the world.
Country
The Polar Data Center (PDC) manages the Science Database among other repositories for Japanese polar research. The Science Database is the destination repository for all Japanese Antarctic Research Expedition (JARE) data as well as the Japanese contribution to the International Polar Year (IPY) 2007-2008. Metadata are in English and Japanese, and metadata records are shared with the Global Change Master Directory.
The Alvin Frame-Grabber system provides the NDSF community on-line access to Alvin's video imagery co-registered with vehicle navigation and attitude data for shipboard analysis, planning deep submergence research cruises, and synoptic review of data post-cruise. The system is built upon the methodology and technology developed for the JasonII Virtual Control Van and a prototype system that was deployed on 13 Alvin dives in the East Pacific Rise and the Galapagos (AT7-12, AT7-13). The deployed prototype system was extremely valuable in facilitating real-time dive planning, review, and shipboard analysis.
The World Glacier Monitoring Service (WGMS) collects standardized observations on changes in mass, volume, area and length of glaciers with time (glacier fluctuations), as well as statistical information on the distribution of perennial surface ice in space (glacier inventories). Such glacier fluctuation and inventory data are high priority key variables in climate system monitoring; they form a basis for hydrological modelling with respect to possible effects of atmospheric warming, and provide fundamental information in glaciology, glacial geomorphology and quaternary geology. The highest information density is found for the Alps and Scandinavia, where long and uninterrupted records are available. As a contribution to the Global Terrestrial/Climate Observing System (GTOS, GCOS), the Division of Early Warning and Assessment and the Global Environment Outlook of UNEP, and the International Hydrological Programme of UNESCO, the WGMS collects and publishes worldwide standardized glacier data.
The NSIDC Distributed Active Archive Center (DAAC) processes, archives, documents, and distributes data from NASA's past and current Earth Observing System (EOS) satellites and field measurement programs. The NSIDC DAAC focuses on the study of the cryosphere. The NSIDC DAAC is one of NASA's Earth Observing System Data and Information System (EOSDIS) Data Centers.
Country
The Norwegian Meteorological Institute supplies climate observations and weather data and forecasts for the country and surrounding waters (including the Arctic). In addition commercial services are provided to fit customers requirements. Data are served through a number of subsystems (information provided in repository link) and cover data from internal services of the institute, from external services operated by the institute and research projects where the institute participates. Further information is provided in the landing page which also contains entry points some of the data portals operated.
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.
The twin GRACE satellites were launched on March 17, 2002. Since that time, the GRACE Science Data System (SDS) has produced and distributed estimates of the Earth gravity field on an ongoing basis. These estimates, in conjunction with other data and models, have provided observations of terrestrial water storage changes, ice-mass variations, ocean bottom pressure changes and sea-level variations. This portal, together with PODAAC, is responsible for the distribution of the data and documentation for the GRACE project.
Earthdata powered by EOSDIS (Earth Observing System Data and Information System) is a key core capability in NASA’s Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA’s Earth science data from various sources – satellites, aircraft, field measurements, and various other programs. EOSDIS uses the metadata and service discovery tool Earthdata Search https://search.earthdata.nasa.gov/search. The capabilities of EOSDIS constituting the EOSDIS Science Operations are managed by NASA's Earth Science Data and Information System (ESDIS) Project. The capabilities include: generation of higher level (Level 1-4) science data products for several satellite missions; archiving and distribution of data products from Earth observation satellite missions, as well as aircraft and field measurement campaigns. The EOSDIS science operations are performed within a distributed system of many interconnected nodes - Science Investigator-led Processing Systems (SIPS), and distributed, discipline-specific, Earth science Distributed Active Archive Centers (DAACs) with specific responsibilities for production, archiving, and distribution of Earth science data products. The DAACs serve a large and diverse user community by providing capabilities to search and access science data products and specialized services.
Country
The CRC806-Database platform is the Research Data Management infrastructure of the SFB / CRC 806. The infrastructure is implemented using Open Source software, and implements Open Science, Open Access and Open Data principles. The Collaborative Research Centre (CRC; ‘Sonderforschungsbereich’ or SFB) is designed to capture the complex nature of chronology, regional structure, climatic, environmental and socio-cultural contexts of major intercontinental and transcontinental events of dispersal of Modern Man from Africa to Western Eurasia, and particularly to Europe (Cited from introductory text on: www.sfb806.de).
The IGS global system of satellite tracking stations, Data Centers, and Analysis Centers puts high-quality GPS data and data products on line in near real time to meet the objectives of a wide range of scientific and engineering applications and studies. The IGS collects, archives, and distributes GPS observation data sets of sufficient accuracy to satisfy the objectives of a wide range of applications and experimentation. These data sets are used by the IGS to generate the data products mentioned above which are made available to interested users through the Internet. In particular, the accuracies of IGS products are sufficient for the improvement and extension of the International Terrestrial Reference Frame (ITRF), the monitoring of solid Earth deformations, the monitoring of Earth rotation and variations in the liquid Earth (sea level, ice-sheets, etc.), for scientific satellite orbit determinations, ionosphere monitoring, and recovery of precipitable water vapor measurements.
Alaska Ocean Observing System (AOOS) provides ocean and coastal observations data. The AOOS is governed by the Integrated Ocean Observing System (IOOS) which is a partnership among federal, regional, academic and private sector groups. The Ocean Data Explorer contains scientific and management information including real-time sensor feeds, operational oceanographic and atmospheric models, satellite observations and GIS data sets that describe the biological, chemical and physical characteristics of Alaska and its surrounding waters. This map offers many new updated features that build upon the existing data system.
TerraSAR-X is a German satellite for Earth Observation, which was launched on July 14, 2007. The mission duration was foreseen to be 5 years. TerraSAR-X carries an innovative high resolution x-band sensor for imaging with resolution up to 1 m. TerraSAR-X carries as secondary payload an IGOR GPS receiver with GPS RO capability. GFZ provided the IGOR and is responsible for the related TOR experiment (Tracking, Occultation and Ranging). TerraSAR-X provides continuously atmospheric GPS data in near-real time. These data from GFZ are continuously assimilated in parallel with those from GRACE-A by the world-leading weather centers to improve their global forecasts. TerraSAR-X, together with TanDEM-X also forms a twin-satellite constellation for atmosphere sounding and generates an unique data set for the evaluation of the accuracy of the GPS-RO technique.
Argo is an international programme using autonomous floats to collect temperature, salinity and current data in the ice-free oceans. It is teamed with the Jason ocean satellite series. Argo will soon reach its target of 3000 floats delivering data within 24 hours to researchers and operational centres worldwide. 23 countries contribute floats to Argo and many others help with float deployments. Argo has revolutionized the collection of information from inside the oceans. ARGO Project is organized in regional and national Centers with a Project Office, an Information Center (AIC) and 2 Global Data Centers (GDAC), at the United States and at France. Each DAC submits regularly all its new files to both USGODAE and Coriolis GDACs.The whole Argo data set is available in real time and delayed mode from the global data centres (GDACs). The internet addresses are: https://nrlgodae1.nrlmry.navy.mil/ and http://www.argodatamgt.org
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is an element of the Earth Observing System Data and Information System (EOSDIS). The EOSDIS provides science data to a wide community of users for NASA's Science Mission Directorate. Since the launch of NASA's first ocean-observing satellite, Seasat, in 1978, PO.DAAC has become the premier data center for measurements focused on ocean surface topography (OST), sea surface temperature (SST), ocean winds, sea surface salinity (SSS), gravity, ocean circulation and sea ice.In addition to providing access to its data holdings, PO.DAAC acts as a gateway to data stored at other ocean and climate archives. This and other tools and services enable PO.DAAC to support a wide user community working in areas such as ocean and climate research, applied science and industry, natural resource management, policy making, and general public consumption.