Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 63 result(s)
Country
Oral Cancer Gene Database is an initiative of the Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. The present database, version II, consists of 374 genes. It is developed as a user friendly site that would provide the scientist, information and external links from one place. The database is accessed through a list of all genes, and Keyword Search using gene name or gene symbol, chromosomal location, CGH (in %), and molecular weight. Interaction Network shows the interaction between genes for particular biological processes and molecular functions.
Country
DEG hosts records of currently available essential genomic elements, such as protein-coding genes and non-coding RNAs, among bacteria, archaea and eukaryotes. Essential genes in a bacterium constitute a minimal genome, forming a set of functional modules, which play key roles in the emerging field, synthetic biology.
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
PHI-base is a web-accessible database that catalogues experimentally verified pathogenicity, virulence and effector genes from fungal, Oomycete and bacterial pathogens, which infect animal, plant, fungal and insect hosts. PHI-base is therfore an invaluable resource in the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. In collaboration with the FRAC team, PHI-base also includes antifungal compounds and their target genes.
Genome track alignments using GBrowse on this site are featured with: (1) Annotated and predicted genes and transcripts; (2) QTL / SNP Association tracks; (3) OMIA genes; (4) Various SNP Chip tracks; (5) Other mapping fetures or elements that are available.
Country
SilkDB is a database of the integrated genome resource for the silkworm, Bombyx mori. This database provides access to not only genomic data including functional annotation of genes, gene products and chromosomal mapping, but also extensive biological information such as microarray expression data, ESTs and corresponding references. SilkDB will be useful for the silkworm research community as well as comparative genomics
The Allele Frequency Net Database (AFND) is a public database which contains frequency information of several immune genes such as Human Leukocyte Antigens (HLA), Killer-cell Immunoglobulin-like Receptors (KIR), Major histocompatibility complex class I chain-related (MIC) genes, and a number of cytokine gene polymorphisms. The Allele Frequency Net Database (AFND) provides a central source, freely available to all, for the storage of allele frequencies from different polymorphic areas in the Human Genome. Users can contribute the results of their work into one common database and can perform database searches on information already available. We have currently collected data in allele, haplotype and genotype format. However, the success of this website will depend on you to contribute your data.
Project Achilles is a systematic effort aimed at identifying and cataloging genetic vulnerabilities across hundreds of genomically characterized cancer cell lines. The project uses genome-wide genetic perturbation reagents (shRNAs or Cas9/sgRNAs) to silence or knock-out individual genes and identify those genes that affect cell survival. Large-scale functional screening of cancer cell lines provides a complementary approach to those studies that aim to characterize the molecular alterations (e.g. mutations, copy number alterations) of primary tumors, such as The Cancer Genome Atlas (TCGA). The overall goal of the project is to identify cancer genetic dependencies and link them to molecular characteristics in order to prioritize targets for therapeutic development and identify the patient population that might benefit from such targets. Project Achilles data is hosted on the Cancer Dependency Map Portal (DepMap) where it has been harmonized with our genomics and cellular models data. You can access the latest and all past datasets here: https://depmap.org/portal/download/all/
Content type(s)
Country
A small genotype data repository containing data used in recent papers from the Estonian Biocentre. Most of the data pertains to human population genetics. PDF files of the papers are also freely available.
Country
The CHILDdb platform provides access to data produced by the CHILD project, a longitudinal birth cohort study of children from pregnancy to 8 years of age, across four Canadian provinces. This study analyzes the participants' home environment including physical, chemical, viral, bacterial, nutritional and psychosocial exposures. This data is expected to further knowledge of the genetic and environmental determinants of atopic diseases including asthma, allergy, allergic rhinitis, and eczema. Researchers can create an account to view meta and aggregate data; access demographic data summaries based on selected variables; and submit a scientific Concept Proposal for approval to access individual-level study data.
Phytozome is the Plant Comparative Genomics portal of the Department of Energy's Joint Genome Institute. Families of related genes representing the modern descendants of ancestral genes are constructed at key phylogenetic nodes. These families allow easy access to clade-specific orthology/paralogy relationships as well as insights into clade-specific novelties and expansions.
BioGRID ORCS is an open repository of CRISPR screens compiled through comprehensive curation efforts. The current index is version 1.0.3 and searches more than 49 publications and 58,161 genes to return more than 895 CRISPR screens from 3 major model organism species and 629 cell lines. All screen data are freely provided through our search index and available via download in a wide variety of standardized formats.
Online Mendelian Inheritance in Animals (OMIA) is a catalogue/compendium of inherited disorders, other (single-locus) traits, and genes in 218 animal species (other than human and mouse and rats, which have their own resources) authored by Professor Frank Nicholas of the University of Sydney, Australia, with help from many people over the years. OMIA information is stored in a database that contains textual information and references, as well as links to relevant PubMed and Gene records at the NCBI, and to OMIM and Ensembl.
Gramene is a platform for comparative genomic analysis of agriculturally important grasses, including maize, rice, sorghum, wheat and barley. Relationships between cereals are queried and displayed using controlled vocabularies (Gene, Plant, Trait, Environment, and Gramene Taxonomy) and web-based displays, including the Genes and Quantitative Trait Loci (QTL) modules.
<<<!!!<<< This site is no longer maintained and is provided for reference only. Some functionality or links may not work. For all enquiries please contact the Ensembl Helpdesk http://www.ensembl.org/Help/Contact >>>!!!>>> PhytoPath is a new bioinformatics resource that integrates genome-scale data from important plant pathogen species with literature-curated information about the phenotypes of host infection. Using the Ensembl Genomes browser, it provides access to complete genome assembly and gene models of priority crop and model-fungal, oomycete and bacterial phytopathogens. PhytoPath also links genes to disease progression using data from the curated PHI-base resource. PhytoPath portal is a joint project bringing together Ensembl Genomes with PHI-base, a community-curated resource describing the role of genes in pathogenic infection. PhytoPath provides access to genomic and phentoypic data from fungal and oomycete plant pathogens, and has enabled a considerable increase in the coverage of phytopathogen genomes in Ensembl Fungi and Ensembl Protists. PhytoPath also provides enhanced searching of the PHI-base resource as well as the fungi and protists in Ensembl Genomes.
MetaCyc is a curated database of experimentally elucidated metabolic pathways from all domains of life. MetaCyc contains pathways involved in both primary and secondary metabolism, as well as associated metabolites, reactions, enzymes, and genes. The goal of MetaCyc is to catalog the universe of metabolism by storing a representative sample of each experimentally elucidated pathway. MetaCyc applications include: Online encyclopedia of metabolism, Prediction of metabolic pathways in sequenced genomes, Support metabolic engineering via enzyme database, Metabolite database aids. metabolomics research.
The Cellular Phenotype database stores data derived from high-throughput phenotypic studies and it is being developed as part of the Systems Microscopy Network of Excellence project. The aim of the Cellular Phenotype database is to provide easy access to phenotypic data and facilitate the integration of independent phenotypic studies. Through its interface, users can search for a gene of interest, or a collection of genes, and retrieve the loss-of-function phenotypes observed, in human cells, by suppressing the expression of the selected gene(s), through RNA interference (RNAi), across independent phenotypic studies. Similarly, users can search for a phenotype of interest and retrieve the RNAi reagents that have caused such phenotype and the associated target genes. Information about specific RNAi reagents can also be obtained when searching for a reagent ID.
Country
>>>!!!<<< The repository is no longer available. >>>!!!<<< Indian Genetic Disease Database (IGDD) is an initiative of CSIR Indian Institute of Chemical Biology. It is supported by Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT) of India. The Indian people represent one-sixth of the world population and consists of a ethnically, geographically, and genetically diverse population. In some communities the ratio of genetic disorder is relatively high due to consanguineous marriage practiced in the community. This database has been created to keep track of mutations in the causal genes for genetic diseases common in India and help the physicians, geneticists, and other professionals retrieve and use the information for the benefit of the public. The database includes scientific information about these genetic diseases and disabilities, but also statistical information about these diseases in today's society. Data is categorized by body part affected and then by title of the disease.
HumanCyc provides an encyclopedic reference on human metabolic pathways. It provides a zoomable human metabolic map diagram, and it has been used to generate a steady-state quantitative model of human metabolism. 2016: Subscriptions are now required to access HumanCyc. For more information on obtaining a subscription, click here: http://www.phoenixbioinformatics.org/biocyc#product-biocyc-subscription
The HomoloGene database provides a system for the automated detection of homologs among annotated genes of genomes across multiple species. These homologs are fully documented and organized by homology group. HomoloGene processing uses proteins from input organisms to compare and sequence homologs, mapping back to corresponding DNA sequences.