Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 106 result(s)
The Gene database provides detailed information for known and predicted genes defined by nucleotide sequence or map position. Gene supplies gene-specific connections in the nexus of map, sequence, expression, structure, function, citation, and homology data. Unique identifiers are assigned to genes with defining sequences, genes with known map positions, and genes inferred from phenotypic information. These gene identifiers are used throughout NCBI's databases and tracked through updates of annotation. Gene includes genomes represented by NCBI Reference Sequences (or RefSeqs) and is integrated for indexing and query and retrieval from NCBI's Entrez and E-Utilities systems.
The HUGO Gene Nomenclature Committee (HGNC) assigned unique gene symbols and names to over 35,000 human loci, of which around 19,000 are protein coding. This curated online repository of HGNC-approved gene nomenclature and associated resources includes links to genomic, proteomic and phenotypic information, as well as dedicated gene family pages.
Country
GeneMANI helps you predict the function of your favourite genes and gene sets. GeneMania, a real-time multiple association network integration algorithm for predicting gene function.
GeneWeaver combines cross-species data and gene entity integration, scalable hierarchical analysis of user data with a community-built and curated data archive of gene sets and gene networks, and tools for data driven comparison of user-defined biological, behavioral and disease concepts. Gene Weaver allows users to integrate gene sets across species, tissue and experimental platform. It differs from conventional gene set over-representation analysis tools in that it allows users to evaluate intersections among all combinations of a collection of gene sets, including, but not limited to annotations to controlled vocabularies. There are numerous applications of this approach. Sets can be stored, shared and compared privately, among user defined groups of investigators, and across all users.
<<<!!!<<< NCBI announced plans to retire the Clone DB web interface. Pursuant to this retirement, starting on May 27, 2019, all web pages associated with Clone DB and CloneFinder will redirect to this blog post https://ncbiinsights.ncbi.nlm.nih.gov/?s=clone+db. Links to Clone DB from the NCBI home page will also be going away. >>>!!!>>>
MozAtlas provides gene expression data of adult male and female mosquitoes as tables, expressions, trees and models. MozAtlas also provides sequence orthology relationships with data provided by FlyBase, Vectorbase, Beetlebase, BeeBase, and WormBase.
>>>!!! <<< The Epigenomics database was retired on June 1, 2016. All epigenomics data are available in our GEO resource https://www.ncbi.nlm.nih.gov/geo >>> !!! <<< The Epigenomics database provides genomics maps of stable and reprogrammable nuclear changes that control gene expression and influence health. Users can browse current epigenomic experiments as well as search, compare and browse samples from multiple biological sources in gene-specific contexts. Many epigenomes contain modifications with histone marks, DNA methylation and chromatin structure activity. NCBI Epigenomics database contains datasets from the NIH Roadmap Epigenomics Project.
<<<!!!<<< This repository is no longer available>>>!!!>>>. Although the web pages are no longer available, you will still be able to download the final UniGene builds as static content from the FTP site https://ftp.ncbi.nlm.nih.gov/repository/UniGene/. You will also be able to match UniGene cluster numbers to Gene records by searching Gene with UniGene cluster numbers. For best results, restrict to the “UniGene Cluster Number” field rather than all fields in Gene. For example, a search with Mm.2108[UniGene Cluster Number] finds the mouse transthyretin Gene record (Ttr). You can use the advanced search page https://www.ncbi.nlm.nih.gov/gene/advanced to help construct these searches. Keep in mind that the Gene record contains selected Reference Sequences and GenBank mRNA sequences rather than the larger set of expressed sequences in the UniGene cluster.
The Arabidopsis Information Resource (TAIR) maintains a database of genetic and molecular biology data for the model higher plant Arabidopsis thaliana . Data available from TAIR includes the complete genome sequence along with gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications, and information about the Arabidopsis research community. Gene product function data is updated every two weeks from the latest published research literature and community data submissions. Gene structures are updated 1-2 times per year using computational and manual methods as well as community submissions of new and updated genes. TAIR also provides extensive linkouts from our data pages to other Arabidopsis resources.
Country
Oral Cancer Gene Database is an initiative of the Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai. The present database, version II, consists of 374 genes. It is developed as a user friendly site that would provide the scientist, information and external links from one place. The database is accessed through a list of all genes, and Keyword Search using gene name or gene symbol, chromosomal location, CGH (in %), and molecular weight. Interaction Network shows the interaction between genes for particular biological processes and molecular functions.
EMAGE (e-Mouse Atlas of Gene Expression) is an online biological database of gene expression data in the developing mouse (Mus musculus) embryo. The data held in EMAGE is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. EMAGE is a freely available web-based resource funded by the Medical Research Council (UK) and based at the MRC Human Genetics Unit in the Institute of Genetics and Molecular Medicine, Edinburgh, UK.
MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human health and disease. The projects contributing to this resource are: Mouse Genome Database (MGD) Project, Gene Expression Database (GXD) Project, Mouse Tumor Biology (MTB) Database Project, Gene Ontology (GO) Project at MGI, MouseMine Project, MouseCyc Project at MGI
The Expression Atlas provides information on gene expression patterns under different biological conditions such as a gene knock out, a plant treated with a compound, or in a particular organism part or cell. It includes both microarray and RNA-seq data. The data is re-analysed in-house to detect interesting expression patterns under the conditions of the original experiment. There are two components to the Expression Atlas, the Baseline Atlas and the Differential Atlas. The Baseline Atlas displays information about which gene products are present (and at what abundance) in "normal" conditions (e.g. tissue, cell type). It aims to answer questions such as "which genes are specifically expressed in human kidney?". This component of the Expression Atlas consists of highly-curated and quality-checked RNA-seq experiments from ArrayExpress. It has data for many different animal and plant species. New experiments are added as they become available. The Differential Atlas allows users to identify genes that are up- or down-regulated in a wide variety of different experimental conditions such as yeast mutants, cadmium treated plants, cystic fibrosis or the effect on gene expression of mind-body practice. Both microarray and RNA-seq experiments are included in the Differential Atlas. Experiments are selected from ArrayExpress and groups of samples are manually identified for comparison e.g. those with wild type genotype compared to those with a gene knock out. Each experiment is processed through our in-house differential expression statistical analysis pipeline to identify genes with a high probability of differential expression.
The dbVar is a database of genomic structural variation containing data from multiple gene studies. Users can browse data containing the number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals. ***NCBI will phase out support for non-human organism data in dbSNP and dbVar beginning on September 1, 2017 ***
Country
>>>!!!<<<As stated 2017-05-23 Cancer GEnome Mine is no longer available >>>!!!<<< Cancer GEnome Mine is a public database for storing clinical information about tumor samples and microarray data, with emphasis on array comparative genomic hybridization (aCGH) and data mining of gene copy number changes.
NetSlim is a resource of high-confidence signaling pathway maps derived from NetPath pathway reactions. 40-60% of the molecules and their reactions in NetPath pathways are available in NetSlim.
Country
BacMap is a picture atlas of annotated bacterial genomes. It is an interactive visual database containing hundreds of fully labeled, zoomable, and searchable maps of bacterial genomes.
In early 2010 we updated the site to facilitate more rapid transfer of our data to the public database and focus our efforts on the core mission of providing expression pattern images to the research community. The original database https://www.fruitfly.org/index.html reproduced functions available on FlyBase, complicating our updates by the requirement to re-synchronize with FlyBase updates. Our expression reports on the new site still link to FlyBase gene reports, but we no longer reproduce FlyBase functions and therefore can update expression data on an ongoing basis instead of more infrequent major releases. All the functions relating to the expression patterns remain and we soon will add an option to search expression patterns by image similarity, in addition to annotation term searches. In a transitional phase we will leave both the old and the new sites up, but the newer data (post Release 2) will appear only on the new website. We welcome any feedback or requests for additional features. - The goals of the Drosophila Genome Center are to finish the sequence of the euchromatic genome of Drosophila melanogaster to high quality and to generate and maintain biological annotations of this sequence. In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community.
>>>>!!!!<<<< AspGD data are being integrated into FungiDB. Please click here for additional details http://fungidb.org/ . Discussion of how to maximize the value of FungiDB for the Aspergillus research community will be a major topic at the upcoming AsperFest12 meeting at Asilomar (March 16-17, 2015). >>>>!!!!<<<< AspGD is an organized collection of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). AspGD contains information about genes and proteins of multiple Aspergillus species; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Aspergillus species.
The Cancer Immunome Database (TCIA) provides results of comprehensive immunogenomic analyses of next generation sequencing data (NGS) data for 20 solid cancers from The Cancer Genome Atlas (TCGA) and other datasource. The Cancer Immunome Atlas (TCIA) was developed and is maintained at the Division of Bioinformatics (ICBI). The database can be queried for the gene expression of specific immune-related gene sets, cellular composition of immune infiltrates (characterized using gene set enrichment analyses and deconvolution), neoantigens and cancer-germline antigens, HLA types, and tumor heterogeneity (estimated from cancer cell fractions). Moreover it provides survival analyses for different types immunological parameters. TCIA will be constantly updated with new data and results.
LOVD portal provides LOVD software and access to a list of worldwide LOVD applications through Locus Specific Database list and List of Public LOVD installations. The LOVD installations that have indicated to be included in the global LOVD listing are included in the overall LOVD querying service, which is based on an API.