Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 29 result(s)
Earth Resources Observation and Science (EROS) Center is a remotely sensed data management, systems development, and research field center for the U.S. Geological Survey's (USGS) Climate and Land Use Change Mission Area. The USGS is a bureau of the U.S. Department of the Interior. It currently houses one of the largest computer complexes in the Department of the Interior. EROS has approximately 600 government and contractor employees.
The UK Solar System Data Centre (UKSSDC) provides a STFC and NERC jointly funded central archive and data centre facility for Solar System science in the UK. The facilities include the World Data Centre for Solar-Terrestrial Physics, Chilton and the Cluster Ground-Based Data Centre. The UKSSDC supports data archives for the whole UK solar system community encompassing solar, inter-planetary, magnetospheric, ionospheric and geomagnetic science. The UKSSDC is part of RAL Space based at the STFC run Rutherford Appleton Laboratory in Oxfordshire.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
-----<<<<< The repository is no longer available. This record is out-dated. >>>>>----- GEON is an open collaborative project that is developing cyberinfrastructure for integration of 3 and 4 dimensional earth science data. GEON will develop services for data integration and model integration, and associated model execution and visualization. Mid-Atlantic test bed will focus on tectonothermal, paleogeographic, and biotic history from the late-Proterozoicto mid-Paleozoic. Rockies test bed will focus on integration of data with dynamic models, to better understand deformation history. GEON will develop the most comprehensive regional datasets in test bed areas.
Country
The company RapidEye AG of Brandenburg brought on 29 August 2008 five satellites into orbit that can be aligned within a day to any point on Earth. The data are interesting for a number of large and small companies for applications from harvest planning to assessment of insurance claims case of natural disasters. Via the Rapid Eye Science Archive (RESA) science users can receive, free of charge, optical image data of the RapidEye satellite fleet. Imagery is allocated based on a proposal to be submitted via the RESA Portal which will be evaluated by independent experts.
>>>!!!<<< 2019-01: Global Land Cover Facility goes offline see https://spatialreserves.wordpress.com/2019/01/07/global-land-cover-facility-goes-offline/ ; no more access to http://www.landcover.org >>>!!!<<< The Global Land Cover Facility (GLCF) provides earth science data and products to help everyone to better understand global environmental systems. In particular, the GLCF develops and distributes remotely sensed satellite data and products that explain land cover from the local to global scales.
Content type(s)
Launched in November 1995, RADARSAT-1 provided Canada and the world with an operational radar satellite system capable of timely delivery of large amounts of data. Equipped with a powerful synthetic aperture radar (SAR) instrument, it acquired images of the Earth day or night, in all weather and through cloud cover, smoke and haze. RADARSAT-1 was a Canadian-led project involving the Canadian federal government, the Canadian provinces, the United States, and the private sector. It provided useful information to both commercial and scientific users in such fields as disaster management, interferometry, agriculture, cartography, hydrology, forestry, oceanography, ice studies and coastal monitoring. In 2007, RADARSAT-2 was launched, producing over 75,000 images per year since. In 2019, the RADARSAT Constellation Mission was deployed, using its three-satellite configuration for all-condition coverage. More information about RADARSAT-2 see https://mda.space/en/geo-intelligence/ RADARSAT-2 PORTAL see https://gsiportal.mda.space/gc_cp/#/map
Content type(s)
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> Japan Space Systems (J-spacesystems) aims to contribute to the advancement of Japanese industry, space systems technology, conservation of the earth environment, utilization of the space environment, and other research and development efforts. The system provides access to data from unmanned space missions and remote sensing instruments.
Copernicus is a European system for monitoring the Earth. Copernicus consists of a complex set of systems which collect data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and sea-borne sensors. It processes these data and provides users with reliable and up-to-date information through a set of services related to environmental and security issues. The services address six thematic areas: land monitoring, marine monitoring, atmosphere monitoring, climate change, emergency management and security. The main users of Copernicus services are policymakers and public authorities who need the information to develop environmental legislation and policies or to take critical decisions in the event of an emergency, such as a natural disaster or a humanitarian crisis. Based on the Copernicus services and on the data collected through the Sentinels and the contributing missions , many value-added services can be tailored to specific public or commercial needs, resulting in new business opportunities. In fact, several economic studies have already demonstrated a huge potential for job creation, innovation and growth.
The USGS currently houses the institute at the Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota. The LCI will address land cover topics from local to global scales, and in both domestic and international settings. The USGS through the Land Cover Institute serves as a facilitator for land cover and land use science, applications, and production functions. The institute assists in the availability and technical support of land cover data sets through increasing public and scientific awareness of the importance of land cover science. LCI continues, after the reorganization of the World Data Centers in 2009, serving as the World Data Center (WDC) for land cover data for access to, or information about, land cover data of the world
The World Data Centre for Meteorology is located in Obninsk in the All-Russian Research Institute of Hydrometeorological Information World Data Centre (RIHMI-WDC). The task of the Centre is to collect and disseminate meteorological data and products worldwide and especially in Russia. The information basis of the Centre is updated on regular basis from various sources including the bilateral data exchange with the World Data Centre for Meteorology in Ashville, North Carolina, USA. The data holdings of WDC – Rockets, Satellites and Earth Rotation (WDC RSER) have become, in December 2015, part of the collection of WDC – Meteorology, Obninsk
The IGS global system of satellite tracking stations, Data Centers, and Analysis Centers puts high-quality GPS data and data products on line in near real time to meet the objectives of a wide range of scientific and engineering applications and studies. The IGS collects, archives, and distributes GPS observation data sets of sufficient accuracy to satisfy the objectives of a wide range of applications and experimentation. These data sets are used by the IGS to generate the data products mentioned above which are made available to interested users through the Internet. In particular, the accuracies of IGS products are sufficient for the improvement and extension of the International Terrestrial Reference Frame (ITRF), the monitoring of solid Earth deformations, the monitoring of Earth rotation and variations in the liquid Earth (sea level, ice-sheets, etc.), for scientific satellite orbit determinations, ionosphere monitoring, and recovery of precipitable water vapor measurements.
EartH2Observe brings together the findings from European FP projects DEWFORA, GLOWASIS, WATCH, GEOWOW and others. It will integrate available global earth observations (EO), in-situ datasets and models and will construct a global water resources re-analysis dataset of significant length (several decades). The resulting data will allow for improved insights on the full extent of available water and existing pressures on global water resources in all parts of the water cycle. The project will support efficient and globally consistent water management and decision making by providing comprehensive multi-scale (regional, continental and global) water resources observations. It will test new EO data sources, extend existing processing algorithms and combine data from multiple satellite missions in order to improve the overall resolution and reliability of EO data included in the re-analysis dataset. The resulting datasets will be made available through an open Water Cycle Integrator data portal https://wci.earth2observe.eu/ : the European contribution to the GEOSS/WCI approach. The datasets will be downscaled for application in case-studies at regional and local levels, and optimized based on identified European and local needs supporting water management and decision making . Actual data access: https://wci.earth2observe.eu/data/group/earth2observe
Country
The term GNSS (Global Navigation Satellite Systems) comprises the different navigation satellite systems like GPS, GLONAS and the future Galileo as well as rawdata from GNSS microwave receivers and processed or derived higher level products and required auxiliary data. The results of the GZF GNSS technology based projects are used as contribution for maintaining and studying the Earth rotational behavior and the global terrestial reference frame, for studying neotectonic processes along plate boundaries and the interior of plates and as input to short term weather forecasting and atmosphere/climate research. Currently only selected products like observation data, navigation data (ephemeriden), meteorological data as well as quality data with a limited spatial coverage are provided by the GNSS ISDC.
The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected, modified and hosted a large amount of earth observation data for the majority of the UK, including imagery from ERS satellites, ENVISAT and ALOS, high-resolution Digital Elevation Models (DEMs) and Digital Terrain Models (DTMs) and aerial photography dating back to 1930. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC. Aside from the thermal imagery data which stands alone, the data reside in four collections: optical, elevation, radar and feature.
The Shuttle Radar Topography Mission, which flew aboard NASA's Space Shuttle Endeavour during an 11-day mission in 2000, made the first near-global topographical map of Earth, collecting data on nearly 80 percent of Earth's land surfaces. The instrument's design was essentially a modified version of the earlier Shuttle Imaging Radar instruments with a second antenna added to allow for topographic mapping using a technique similar to stereo photography.
Country
HALO-DB is the web platform of a data retrieval and long-term archive system. The system was established to hold and to manage a wide range of data based on observations of the HALO research aircraft and data which are related to HALO observations. HALO (High-Altitude and LOng-range aircraft) is the new German research aircraft (German Science Community (DFG)). The aircraft, a Gulfstream GV-550 Business-Jet, is strongly modified for the application as a research platform. HALO offers several advantages for scientific campaigns, such as its high range of more than 10000 km, a high maximum altitude of more than 15 km, as well as a relatively high payload.
The GTN-P database is an object-related database open for a diverse range of data. Because of the complexity of the PAGE21 project, data provided in the GTN-P management system are extremely diverse, ranging from active-layer thickness measurements once per year to flux measurement every second and everthing else in between. The data can be assigned to two broad categories: Quantitative data which is all data that can be measured numerically. Quantitative data comprise all in situ measurements, i.e. permafrost temperatures and active layer thickness (mechanical probing, frost/thaw tubes, soil temperature profiles). Qualitative data (knowledge products) are observations not based on measurements, such as observations on soils, vegetation, relief, etc.
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.
Country
SAMD is a repository for Standardized Atmospheric Measurement Data: Central Europe is a region with one of the most comprehensive networks for cloud and precipitation observations worldwide. To unify these observations, establish the infrastructure to store it and make it accessible to the research community is the goal of SAMD. SAMD is one result of the project "High Definition of Clouds and Precipitation in advancing Climate Prediction" (HD(CP)²).
Content type(s)
The World Data Centre for Aerosols (WDCA) is the data repository and archive for microphysical, optical, and chemical properties of atmospheric aerosol of the World Meteorological Organisation's (WMO) Global Atmosphere Watch (GAW) programme. The goal of the Global Atmosphere Watch (GAW) programme is to ensure long-term measurements in order to detect trends in global distributions of chemical constituents in air and the reasons for them. With respect to aerosols, the objective of GAW is to determine the spatio-temporal distribution of aerosol properties related to climate forcing and air quality on multi-decadal time scales and on regional, hemispheric and global spatial scales.
High spatial resolution, contemporary data on human population distributions are a prerequisite for the accurate measurement of the impacts of population growth, for monitoring changes and for planning interventions. The WorldPop project aims to meet these needs through the provision of detailed and open access population distribution datasets built using transparent approaches. The WorldPop project was initiated in October 2013 to combine the AfriPop, AsiaPop and AmeriPop population mapping projects. It aims to provide an open access archive of spatial demographic datasets for Central and South America, Africa and Asia to support development, disaster response and health applications. The methods used are designed with full open access and operational application in mind, using transparent, fully documented and peer-reviewed methods to produce easily updatable maps with accompanying metadata and measures of uncertainty.