Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 41 result(s)
The NCAR is a federally funded research and development center committed to research and education in atmospheric science and related scientific fields. NCAR seeks to support and enhance the scientific community nationally and globally by monitoring and researching the atmosphere and related physical and biological systems. Users can access climate and earth models created to better understand the atmosphere, the Earth and the Sun; as well as data from various NCAR research programs and projects. NCAR is sponsored by the National Science Foundation in addition to various other U.S. agencies.
The Clouds and the Earth’s Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. CERES instruments provide radiometric measurements of the Earth’s atmosphere from three broadband channels. CERES products include both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the Earth's surface.
The World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT, offers scientists and the general public free access (in the sense of a “one-stop shop”) to a continuously growing collection of atmosphere-related satellite-based data sets (ranging from raw to value added data), information products and services. Focus is on atmospheric trace gases, aerosols, dynamics, radiation, and cloud physical parameters. Complementary information and data on surface parameters (e.g. vegetation index, surface temperatures) is also provided. This is achieved either by giving access to data stored at the data center or by acting as a portal containing links to other providers.
TES is the first satellite instrument to provide simultaneous concentrations of carbon monoxide, ozone, water vapor and methane throughout Earth’s lower atmosphere. This lower atmosphere (the troposphere) is situated between the surface and the height at which aircraft fly, and is an important part of the atmosphere that we often impact with our activities.
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.
The Ozone Mapping and Profiler Suite measures the ozone layer in our upper atmosphere—tracking the status of global ozone distributions, including the ‘ozone hole.’ It also monitors ozone levels in the troposphere, the lowest layer of our atmosphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS’s measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet Index, a guide to safe levels of sunlight exposure. OMPS has two sensors, both new designs, composed of three advanced hyperspectralimaging spectrometers.The three spectrometers: a downward-looking nadir mapper, nadir profiler and limb profiler. The entire OMPS suite currently fly on board the Suomi NPP spacecraft and are scheduled to fly on the JPSS-2 satellite mission. NASA will provide the OMPS-Limb profiler.
SuperDARN is an international HF radar network designed to measure global-scale magnetospheric convection by observing plasma motion in the Earth’s upper atmosphere. This network consists of more than 20 radars operating on frequencies between 8 and 20 MHz that look into the polar regions of Earth. These radars can measure the position and velocity of charged particles in our ionosphere, the highest layer of the Earth's atmosphere, and provide scientists with information regarding Earth's interaction with the space environment.
Country
The term GNSS (Global Navigation Satellite Systems) comprises the different navigation satellite systems like GPS, GLONAS and the future Galileo as well as rawdata from GNSS microwave receivers and processed or derived higher level products and required auxiliary data. The results of the GZF GNSS technology based projects are used as contribution for maintaining and studying the Earth rotational behavior and the global terrestial reference frame, for studying neotectonic processes along plate boundaries and the interior of plates and as input to short term weather forecasting and atmosphere/climate research. Currently only selected products like observation data, navigation data (ephemeriden), meteorological data as well as quality data with a limited spatial coverage are provided by the GNSS ISDC.
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
The Alvin Frame-Grabber system provides the NDSF community on-line access to Alvin's video imagery co-registered with vehicle navigation and attitude data for shipboard analysis, planning deep submergence research cruises, and synoptic review of data post-cruise. The system is built upon the methodology and technology developed for the JasonII Virtual Control Van and a prototype system that was deployed on 13 Alvin dives in the East Pacific Rise and the Galapagos (AT7-12, AT7-13). The deployed prototype system was extremely valuable in facilitating real-time dive planning, review, and shipboard analysis.
On June 1, 1990 the German X-ray observatory ROSAT started its mission to open a new era in X-ray astronomy. Doubtless, this is the most ambitious project realized up to now in the short history of this young astronomical discipline. Equipped with the largest imaging X-ray telescope ever inserted into an earth orbit ROSAT has provided a tremendous amount of new scientific data and insights.
<<<!!!<<< This repository is no longer available. >>>!!!>>> TRMM is a research satellite designed to improve our understanding of the distribution and variability of precipitation within the tropics as part of the water cycle in the current climate system. By covering the tropical and sub-tropical regions of the Earth, TRMM provides much needed information on rainfall and its associated heat release that helps to power the global atmospheric circulation that shapes both weather and climate. In coordination with other satellites in NASA's Earth Observing System, TRMM provides important precipitation information using several space-borne instruments to increase our understanding of the interactions between water vapor, clouds, and precipitation, that are central to regulating Earth's climate. The TRMM mission ended in 2015 and final TRMM multi-satellite precipitation analyses (TMPA, product 3B42/3B43) data processing will end December 31st, 2019. As a result, this TRMM webpage is in the process of being retired and some TRMM imagery may not be displaying correctly. Some of the content will be moved to the Precipitation Measurement Missions website https://gpm.nasa.gov/ and our team is exploring ways to provide some of the real-time products using GPM data. Please contact us if you have any additional questions.
The NCEP/NCAR Reanalysis Project is a joint project between the National Centers for Environmental Prediction (NCEP, formerly "NMC") and the National Center for Atmospheric Research (NCAR). The goal of this joint effort is to produce new atmospheric analyses using historical data (1948 onwards) and as well to produce analyses of the current atmospheric state (Climate Data Assimilation System, CDAS).
The DCS allows you to search a catalogue of metadata (information describing data) to discover and gain access to NERC's data holdings and information products. The metadata are prepared to a common NERC Metadata Standard and are provided to the catalogue by the NERC Data Centres.
The Solar Dynamics Observatory (SDO) studies the solar atmosphere on small scales of space and time, in multiple wavelengths. This is a searchable database of all SDO data, including citizen scientist images, space weather and near real time data, and helioseismology data.
<<<!!!<<< This site has been decommissioned. For up-to-date information about Summit Camp and other Arctic Research Operations, please use the Battelle Arctic Gateway. https://battellearcticgateway.org/ >>>!!!>>>
This website provides access to an extensive database of environmental data and an integrated suite of online tools and resources to help Federal Land Managers assess and analyze the air quality and visibility in Federally-protected lands such as National Parks, National Forests, and Wilderness Areas
NOAA's Coral Reef Information System (CoRIS) is a web-based information portal that provides access to NOAA coral reef information and data products with emphasis on the U.S. states, territories and remote island areas. NOAA Coral Reef activities include coral reef mapping, monitoring and assessment; natural and socioeconomic research and modeling; outreach and education; and management and stewardship.
Country
ISDC's online service portal is an access point for all manner of geoscientific geodata, its corresponding metadata, scientific documentation and software tools. The majority of the data and information, the portal currently offers to the public, are global geomonitoring products such as satellite orbit and Earth gravity field data as well as geomagnetic and atmospheric data for the exploration. These products for Earths changing system are provided via state-of-the art retrieval techniques. The projects hosted are: CHAMP, GGP, GRACE, GNSS, GGSP, GGOS, GPS-PDR, ICGEM, TerraSAR-x (TSX-TOR) and TanDEM-X.
SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian Space Agency small satellite mission for remote sensing of the Earth's atmosphere using solar occultation. The satellite was launched on 12 August 2003 and continues to function perfectly. The primary mission goal is to improve our understanding of the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere, particularly in the Arctic. The high precision and accuracy of solar occultation makes SCISAT useful for monitoring changes in atmospheric composition and the validation of other satellite instruments. The satellite carries two instruments. A high resolution (0.02 cm-¹) infrared Fourier transform spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-¹) is measuring the vertical distribution of trace gases, particles and temperature. This provides vertical profiles of atmospheric constituents including essentially all of the major species associated with ozone chemistry. Aerosols and clouds are monitored using the extinction of solar radiation at 1.02 and 0.525 microns as measured by two filtered imagers. The vertical resolution of the FTS is about 3-4 km from the cloud tops up to about 150 km. Peter Bernath of the University of Waterloo is the principal investigator. A dual optical spectrograph called MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) covers the 400-1030 nm spectral region and measures primarily ozone, nitrogen dioxide and aerosol/cloud extinction. It has a vertical resolution of about 1-2 km. Tom McElroy of Environment and Climate Change Canada is the principal investigator. ACE data are freely available from the University of Waterloo website. SCISAT was designated an ESA Third Party Mission in 2005. ACE data are freely available through an ESA portal.
NASA’s Precipitation Measurement Missions – TRMM and GPM – provide advanced information on rain and snow characteristics and detailed three-dimensional knowledge of precipitation structure within the atmosphere, which help scientists study and understand Earth's water cycle, weather and climate.
Western Regional Climate Center (WRCC) provides historical and current climate data for the western United States. WRCC is one of six regional climate centers partnering with NOAA research institutes to promote climate research and data stewardship.
The Vienna Atomic Line Database (VALD) is a collection of atomic and molecular transition parameters of astronomical interest. VALD offers tools for selecting subsets of lines for typical astrophysical applications: line identification, preparing for spectroscopic observations, chemical composition and radial velocity measurements, model atmosphere calculations etc.