Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 69 result(s)
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
The GWAS Catalog is an open access repository of all human genome wide association studies. It is considered the “go-to” resource for genetic evidence of associations between common genetic variation and diseases or phenotypes, is accessed by scientists, clinicians and other users worldwide, and is integrated with numerous other resources. Association data and metadata are identified and extracted from the scientific literature by expert data curators. Submissions of full genome wide summary data can be made directly by authors, either before or after journal publication.
The Bacterial and Viral Bioinformatics Resource Center (BV-BRC) is an information system designed to support research on bacterial and viral infectious diseases. BV-BRC combines two long-running BRCs: PATRIC, the bacterial system, and IRD/ViPR, the viral systems.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.
St. Jude Cloud, an initiative of St. Jude Children's Research Hospital, provides data and analysis resources to the global research community. Our goal is to empower researchers across the world to advance cures for pediatric cancer and other pediatric catastrophic diseases.
The information in the Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer relates cytogenetic changes and their genomic consequences, in particular gene fusions, to tumor characteristics, based either on individual cases or associations. All the data have been manually culled from the literature by Felix Mitelman in collaboration with Bertil Johansson and Fredrik Mertens.
FaceBase is a collaborative NIDCR-funded project that houses comprehensive data in support of advancing research into craniofacial development and malformation. It serves as a community resource by curating large datasets of a variety of types from the craniofacial research community and sharing them via this website. Practices emphasize a comprehensive and multidisciplinary approach to understanding the developmental processes that create the face. The data offered spotlights high-throughput genetic, molecular, biological, imaging and computational techniques. One of the missions of this project is to facilitate cooperation and collaboration between the central coordinating center (ie, the Hub) and the craniofacial research community.
Born of the desire to systematize analyses from The Cancer Genome Atlas pilot and scale their execution to the dozens of remaining diseases to be studied, GDAC Firehose now sits atop terabytes of analysis-ready TCGA data and reliably executes thousands of pipelines per month. More information: https://broadinstitute.atlassian.net/wiki/spaces/GDAC/
The ENCODE Encyclopedia organizes the most salient analysis products into annotations, and provides tools to search and visualize them. The Encyclopedia has two levels of annotations: Integrative-level annotations integrate multiple types of experimental data and ground level annotations. Ground-level annotations are derived directly from the experimental data, typically produced by uniform processing pipelines.
The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Data and Specimen Hub (DASH) is a centralized resource that allows researchers to share and access de-identified data from studies funded by NICHD. DASH also serves as a portal for requesting biospecimens from selected DASH studies.
The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with comprehensive information o­n the approximately 700 prokaryote species that are present in the human oral cavity. Approximately 49% are officially named, 17% unnamed (but cultivated) and 34% are known o­nly as uncultivated phylotypes. The HOMD presents a provisional naming scheme for the currently unnamed species so that strain, clone, and probe data from any laboratory can be directly linked to a stably named reference scheme. The HOMD links sequence data with phenotypic, phylogenetic, clinical, and bibliographic information. Genome sequences for oral bacteria determined as part of this project, the Human Microbiome Project, and other sequencing projects are being added to the HOMD as they become available. Genomes for 315 oral taxa (46% of taxa o­n HOMD) are currently available o­n HOMD. The HOMD site offers easy to use tools for viewing all publically available oral bacterial genomes.
Gemma is a database for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles. Gemma contains data from thousands of public studies, referencing thousands of published papers. Users can search, access and visualize co-expression and differential expression results.
We are working on a new version of ALFRED web interface. The current web interface will not be available from December 15th, 2023. There will be a period where a public web interface is not available for viewing ALFRED data. Expected date for the deployment of the new ALFRED web interface with minimum functions is March 1st, 2024 --------------------------------------------- ALFRED is a free, web-accessible, curated compilation of allele frequency data on DNA sequence polymorphisms in anthropologically defined human populations. ALFRED is distinct from such databases as dbSNP, which catalogs sequence variation.
<<<!!!<<< As of Aug. 15, 2019, we are suspending plasmid distribution from the collection. If you would like to request BioPlex ORF clones (Harper lab) or if you identify other clones in our collection for which you cannot find an alternative, please email us at plasmidhelp@hms.harvard.edu. >>>!!!>>>
GeneWeaver combines cross-species data and gene entity integration, scalable hierarchical analysis of user data with a community-built and curated data archive of gene sets and gene networks, and tools for data driven comparison of user-defined biological, behavioral and disease concepts. Gene Weaver allows users to integrate gene sets across species, tissue and experimental platform. It differs from conventional gene set over-representation analysis tools in that it allows users to evaluate intersections among all combinations of a collection of gene sets, including, but not limited to annotations to controlled vocabularies. There are numerous applications of this approach. Sets can be stored, shared and compared privately, among user defined groups of investigators, and across all users.
BioGPS is a gene portal built with two guiding principles in mind -- customizability and extensibility. It is a complete resource for learning about gene and protein function. A free extensible and customizable gene annotation portal, a complete resource for learning about gene and protein function.
DNASU is a central repository for plasmid clones and collections. Currently we store and distribute over 200,000 plasmids including 75,000 human and mouse plasmids, full genome collections, the protein expression plasmids from the Protein Structure Initiative as the PSI: Biology Material Repository (PSI : Biology-MR), and both small and large collections from individual researchers. We are also a founding member and distributor of the ORFeome Collaboration plasmid collection.
Clinical Genomic Database (CGD) is a manually curated database of conditions with known genetic causes, focusing on medically significant genetic data with available interventions.
>>>!!!<<< Noticed 26.08.2020: The NCI CBIIT instance of the CGAP no longer exist on this website. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer has a new home at the NCI-funded Institute for Systems Biology Cancer Genomics Cloud available at the following location: https://mitelmandatabase.isb-cgc.org >>>!!!<<<
A curated database of mutations and polymorphisms associated with Lafora Progressive Myoclonus Epilepsy. The Lafora progressive myoclonus epilepsy mutation and polymorphism database is a collection of hand curated mutation and polymorphism data for the EPM2A and EPM2B (NHLRC1) from publicly available literature: databases and unpublished data. The database is continuously updated with information from in-house experimental data as well as data from published research studies.
The CPTAC Data Portal is the centralized repository for the dissemination of proteomic data collected by the Proteome Characterization Centers (PCCs) for the CPTAC program. The portal also hosts analyses of the mass spectrometry data (mapping of spectra to peptide sequences and protein identification) from the PCCs and from a CPTAC-sponsored common data analysis pipeline (CDAP).
The NCI's Genomic Data Commons (GDC) provides the cancer research community with a unified data repository that enables data sharing across cancer genomic studies in support of precision medicine. The GDC obtains validated datasets from NCI programs in which the strategies for tissue collection couples quantity with high quality. Tools are provided to guide data submissions by researchers and institutions.
PathCards is an integrated database of human biological pathways and their annotations. Human pathways were clustered into SuperPaths based on gene content similarity. Each PathCard provides information on one SuperPath which represents one or more human pathways.
LifeMap Discovery® is a compendium of embryonic development for stem cell research and regenerative medicine, constructed by integrating extensive molecular, cellular, anatomical and medical data curated from scientific literature and high-throughput data sources.