Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 26 result(s)
The EUROLAS Data Center (EDC) is one of the two data centers of the International Laser Ranging Service (ILRS). It collects, archives and distributes tracking data, predictions and other tracking relevant information from the global SLR network. Additionally EDC holds a mirror of the official Web-Pages of the ILRS at Goddard Space Flight Center (GSFC). And as result of the activities of the Analysis Working Group (AWG) of the ILRS, DGFI has been selected as analysis centers (AC) and as backup combination center (CC). This task includes weekly processing of SLR observations to LAGEOS-1/2 and ETALON-1/2 to compute station coordinates and earth orientation parameters. Additionally the combination of SLR solutions from the various analysis centres to a combinerd ILRS SLR solution.
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provided atmospheric infrared limb emission spectra. From these, profiles of temperature and atmospheric trace gases were retrieved using the research data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The MIPAS data products on this server are commonly known as IMK/IAA MIPAS Level2 data products. The MIPAS instrument measured during two time frames: from 2002 to 2004 in full spectral resolution (high resolution = HR aka full resolution = FR), and from 2005 to 2012 in reduced spectral, but improved spatial resolution (reduced resolution = RR aka optimized resolution = OR). For this reason, there are different version numbers covering the full MIPAS mission period: xx for the HR/FR period, and 2xx for the RR/OR period (example: 61 for HR/FR, 261 for RR/OR). Beyond this, measurements were conducted in different modes covering different altitude ranges during the RR period: Nominal (6 – 70 km), MA (18 – 102 km), NLC (39 – 102 km), UA (42 – 172 km), UTLS-1 (5.5 – 19 km), UTLS-2 (12 – 42 km), AE (7 – 38 km). The non-nominal modes are identified by the following version numbers: MA = 5xx, NLC = 7xx, UA = 6xx, UTLS-1/2 = 1xx (no retrievals for AE mode).
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.
The AOML Environmental Data Server (ENVIDS) provides interactive, on-line access to various oceanographic and atmospheric datasets residing at AOML. The in-house datasets include Atlantic Expendable Bathythermograph (XBT), Global Lagrangian Drifting Buoy, Hurricane Flight Level, and Atlantic Hurricane Tracks (North Atlantic Best Track and Synoptic). Other available datasets include Pacific Conductivitiy/Temperature/Depth Recorder (CTD) and World Ocean Atlas 1998.
Country
The Data Center for Aurora in NIPR is responsible for data archiving and dissemination of all-sky camera observations, visual observations, other optical observations (such as TV and photometric observations), auroral image and particle observations from satellites, geomagnetic observations, and observations of upper atmosphere phenomena associated with aurora such as ULF, VLF and CNA activities. This Data Catalogue summarizes the collection of data sets, data books, related publications and facilities available in the WDC for Aurora as of December 2003. The WDC for Aurora changed its name as "Data Center for Aurora in NIPR" in 2008 due to the disappearance of the WDC panel in ICSU.
The Data Center at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC), is responsible for the access, maintenance and distribution of real-time and archive weather satellite data.
The IERS provides data on Earth orientation, on the International Celestial Reference System/Frame, on the International Terrestrial Reference System/Frame, and on geophysical fluids. It maintains also Conventions containing models, constants and standards.
LAADS DAAC is the web interface to the Level 1 and Atmosphere Archive and Distribution System (LAADS). The mission of LAADS is to provide quick and easy access to MODIS Level 1, Atmosphere and Land data products, VIIRS Level 1 and Land data products MAS and MERIS data products. MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites.
SuperDARN is an international HF radar network designed to measure global-scale magnetospheric convection by observing plasma motion in the Earth’s upper atmosphere. This network consists of more than 20 radars operating on frequencies between 8 and 20 MHz that look into the polar regions of Earth. These radars can measure the position and velocity of charged particles in our ionosphere, the highest layer of the Earth's atmosphere, and provide scientists with information regarding Earth's interaction with the space environment.
Country
The ERG  (Exploration of energization and Radiation in Geospace) project is a mission to elucidate acceleration and loss mechanisms of relativistic electrons around Earth during geospace storms. The project consists of the satellite observation team, the ground-based network observation team, and the integrated data analysis/simulation team. The science center archives data related to the ERG project, releases the data to the public, develops integrated analysis tools for the data, and promotes studies related to the ERG  project.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
The name Earth Online derives from ESA's Earthnet programme. Earthnet prepares and attracts new ESA Earth Observation missions by setting the international cooperation scheme, preparing the basic infrastructure, building the scientific and application Community and competency in Europe to define and set-up own European Programmes in consultation with member states. Earth Online is the entry point for scientific-technical information on Earth Observation activities by the European Space Agency (ESA). The web portal provides a vast amount of content, grown and collected over more than a decade: Detailed technical information on Earth Observation (EO) missions; Satellites and sensors; EO data products & services; Online resources such as catalogues and library; Applications of satellite data; Access to promotional satellite imagery. After 10 years of operations on distinct sites, the two principal portals of ESA Earth Observation - Earth Online (earth.esa.int) and the Principal Investigator's Portal (eopi.esa.int) have moved to a new platform. ESA's technical and scientific earth observation user communities will from now on be served from a single portal, providing a modern and easy-to-use interface to our services and data.
Measurements Of Pollution In The Troposphere (MOPITT) was launched into sun-synchronous polar orbit on December 18, 1999, aboard TERRA, a NASA satellite orbiting 705 km above the Earth. MOPITT monitors changes in pollution patterns and the effects on Earth’s troposphere. MOPITT uses near-infrared radiation at 2.3 µm and thermal-infrared radiation at 4.7 µm to calculate atmospheric profiles of CO.
Real-Time Database for high-resolution Neutron Monitor measurements. NMDB provides access to Neutron Monitor measurements from stations around the world. The goal of NMDB is to provide easy access to all Neutron Monitor measurements through an easy to use interface. NMDB provides access to real-time as well as historical data.
HITRAN is an acronym for high-resolution transmission molecular absorption database. The HITRAN compilation of the SAO (HIgh resolution TRANmission molecular absorption database) is used for predicting and simulating transmission and emission of light in atmospheres. It is the world-standard database in molecular spectroscopy. The journal article describing it is the most cited reference in the geosciences. There are presently about 5000 HITRAN users world-wide. Its associated database HITEMP (high-temperature spectroscopic absorption parameters) is accessible by the HITRAN website.
Country
The TRR170-DB was set up to manage data products of the collaborative research center TRR 170 'Late Accretion onto Terrestrial Planets' (https://www.trr170-lateaccretion.de/). However, meanwhile the repository also stores data by other institutions and researchers. Data include laboratory and other instrumental data on planetary samples, remote sensing data, geological maps and model simulations.
Country
The World Data Centre for Geomagnetism, Mumbai is the part of the Indian Institute of Geomagnetism, an autonomous research institute under the Department of Science and Technology, Government of India. This Centre is a part of ICSU World Data Centre System operated since 1971. This Centre has collected a comprehensive set of analog and digital geomagnetic data as well as indices of geomagnetic activity supplied from a worldwide network of magnetic observatories.
The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth's weather, climate, and air quality. CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite. CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.
The ASTER Volcano Archive (AVA) is the worlds largest specialty archive of volcano data. For 1,549 recently active volcanos listed by the Smithsonian Global Volcanism Program, the AVA has collected the entirety of high-resolution multispectral ASTER data and made it available to the public. Also included are digital elevation maps, NOAA ash advisories, alteration zone imagery, and thermal anomaly reports. LANDSAT7 data are also being processed.
Among the basic tasks of WDC-Ukraine there is collection, handling and storage of science data and giving access to it for usage both in science research and study process. That include contemporary tutoring technologies and resources of e-libraries and archives; remote access to own information resources for the wide circle of scientists from the universities and science institutions of Ukraine
When published in 2005, the Millennium Run was the largest ever simulation of the formation of structure within the ΛCDM cosmology. It uses 10(10) particles to follow the dark matter distribution in a cubic region 500h(−1)Mpc on a side, and has a spatial resolution of 5h−1kpc. Application of simplified modelling techniques to the stored output of this calculation allows the formation and evolution of the ~10(7) galaxies more luminous than the Small Magellanic Cloud to be simulated for a variety of assumptions about the detailed physics involved. As part of the activities of the German Astrophysical Virtual Observatory we have created relational databases to store the detailed assembly histories both of all the haloes and subhaloes resolved by the simulation, and of all the galaxies that form within these structures for two independent models of the galaxy formation physics. We have implemented a Structured Query Language (SQL) server on these databases. This allows easy access to many properties of the galaxies and halos, as well as to the spatial and temporal relations between them. Information is output in table format compatible with standard Virtual Observatory tools. With this announcement (from 1/8/2006) we are making these structures fully accessible to all users. Interested scientists can learn SQL and test queries on a small, openly accessible version of the Millennium Run (with volume 1/512 that of the full simulation). They can then request accounts to run similar queries on the databases for the full simulations. In 2008 and 2012 the simulations were repeated.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
The Multi-angle Imaging SpectroRadiometer (MISR) measurements are designed to improve understanding of the Earth’s environment and climate. MISR provides radiometrically and geometrically calibrated images in four spectral bands at each of nine widely-spaced angles. Spatial sampling of 275 and 1100 meters is provided on a global basis. All MISR data products are available in HDF-EOS format, and select products are available in netCDF format.