Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 15 result(s)
BSRN is a project of the Radiation Panel (now the Data and Assessment Panel) from the Global Energy and Water Cycle Experiment (GEWEX) under the umbrella of the World Climate Research Programme (WCRP). It is the global baseline network for surface radiation for the Global limate Observing System (GCOS), contributing to the Global Atmospheric Watch (GAW), and forming a ooperative network with the Network for the Detection of Atmospheric Composition Change NDACC).
The EUROLAS Data Center (EDC) is one of the two data centers of the International Laser Ranging Service (ILRS). It collects, archives and distributes tracking data, predictions and other tracking relevant information from the global SLR network. Additionally EDC holds a mirror of the official Web-Pages of the ILRS at Goddard Space Flight Center (GSFC). And as result of the activities of the Analysis Working Group (AWG) of the ILRS, DGFI has been selected as analysis centers (AC) and as backup combination center (CC). This task includes weekly processing of SLR observations to LAGEOS-1/2 and ETALON-1/2 to compute station coordinates and earth orientation parameters. Additionally the combination of SLR solutions from the various analysis centres to a combinerd ILRS SLR solution.
The Infrared Space Observatory (ISO) is designed to provide detailed infrared properties of selected Galactic and extragalactic sources. The sensitivity of the telescopic system is about one thousand times superior to that of the Infrared Astronomical Satellite (IRAS), since the ISO telescope enables integration of infrared flux from a source for several hours. Density waves in the interstellar medium, its role in star formation, the giant planets, asteroids, and comets of the solar system are among the objects of investigation. ISO was operated as an observatory with the majority of its observing time being distributed to the general astronomical community. One of the consequences of this is that the data set is not homogeneous, as would be expected from a survey. The observational data underwent sophisticated data processing, including validation and accuracy analysis. In total, the ISO Data Archive contains about 30,000 standard observations, 120,000 parallel, serendipity and calibration observations and 17,000 engineering measurements. In addition to the observational data products, the archive also contains satellite data, documentation, data of historic aspects and externally derived products, for a total of more than 400 GBytes stored on magnetic disks. The ISO Data Archive is constantly being improved both in contents and functionality throughout the Active Archive Phase, ending in December 2006.
The International Service of Geomagnetic Indices (ISGI) is in charge of the elaboration and dissemination of geomagnetic indices, and of tables of remarkable magnetic events, based on the report of magnetic observatories distributed all over the planet, with the help of ISGI Collaborating Institutes. The interaction between the solar wind, including plasma and interplanetary magnetic field, and the Earth's magnetosphere results in a transfer of energy and particles inside the magnetosphere. Solar wind characteristics are highly variable, and they have actually a direct influence on the shape and size of the magnetosphere, on the amount of transferred energy, and on the way this energy is dissipated. It is clear that the great diversity of sources of magnetic variations give rise to a great complexity in ground magnetic signatures. Geomagnetic indices aim at describing the geomagnetic activity or some of its components. Each geomagnetic index is related to different phenomena occurring in the magnetosphere, ionosphere and deep in the Earth in its own unique way. The location of a measurement, the timing of the measurement and the way the index is calculated all affect the type of phenomenon the index relates to. The IAGA endorsed geomagnetic indices and lists of remarkable geomagnetic events constitute unique temporal and spatial coverage data series homogeneous since middle of 19th century.
<<<!!!<<< This MultiDark application is now integrated into CosmoSim (https://www.cosmosim.org/ , all data and much more is available there. The old MultiDark server is no longer available. >>>!!!>>> The MultiDark database provides results from cosmological simulations performed within the MultiDark project. This database can be queried by entering SQL statements directly into the Query Form. The access to that form and thus access to the public & private databases is password protected.
Subject(s)
Country
Edmond is the institutional repository of the Max Planck Society for public research data. It enables Max Planck scientists to create citable scientific assets by describing, enriching, sharing, exposing, linking, publishing and archiving research data of all kinds. Further on, all objects within Edmond have a unique identifier and therefore can be clearly referenced in publications or reused in other contexts.
Country
The GAVO data centre at Zentrum für Astronomie Heidelberg publishes astronomical data of all kinds – e.g., catalogues, images, spectra, time series, simulation results – in accordance with Virtual Observatory standards, making them findable and immediately usable through popular clients like TOPCAT, Aladin, or programatically through the astropy-affiliated package pyVO or the Java library STIL. We pay particular attention to providing thorough metadata to the VO Registry in order to facilitate discovery and reuse. While we have a clear focus on data produced with German contributions, we will usually publish data of other provenance, too. See https://docs.g-vo.org/DaCHS/data_checklist.html for an overview of what resource-level metadata we ask for; contact us for further information on how to publish through the German Astronomical Virtual Observatory.
As part of the Copernicus Space Component programme, ESA manages the coordinated access to the data procured from the various Contributing Missions and the Sentinels, in response to the Copernicus users requirements. The Data Access Portfolio documents the data offer and the access rights per user category. The CSCDA portal is the access point to all data, including Sentinel missions, for Copernicus Core Users as defined in the EU Copernicus Programme Regulation (e.g. Copernicus Services).The Copernicus Space Component (CSC) Data Access system is the interface for accessing the Earth Observation products from the Copernicus Space Component. The system overall space capacity relies on several EO missions contributing to Copernicus, and it is continuously evolving, with new missions becoming available along time and others ending and/or being replaced.
>>>!!!<<< 2019-12-03: The repository is no longer available >>>!!!<<< Please use https://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html The atomic line data used in this database are taken from Bob Kurucz' CD-ROM 23 of spectroscopic line calculations. The database contains all lines of the file "gfall.dat" with the following items for each line: Wavelength; loggf; element code; lower level: energy, J, configuration; upper level: energy, J, configuration; gamma r; gamma s; gamma w; reference code. CD-ROM 23 has all the atomic line data with good wavelengths in one large file and in one file for each species. The big file is also divided into 10 nm and 100 nm sections for convenience. Also given are hyperfine line lists for neutral Sc, V, Mn, and Co that were produced by splitting all the energy levels for which laboratory data are available (only a small fraction).
On June 1, 1990 the German X-ray observatory ROSAT started its mission to open a new era in X-ray astronomy. Doubtless, this is the most ambitious project realized up to now in the short history of this young astronomical discipline. Equipped with the largest imaging X-ray telescope ever inserted into an earth orbit ROSAT has provided a tremendous amount of new scientific data and insights.
The WDC has a FTP-server to distribute the PCN index derived from the geomagnetic observatory Qaanaaq (THL) and the Kp-index data products derived at the geomagnetic observatory Niemegk (NGK). The WDC is also holding extensive archives of magnetograms and other geomagnetic observatory data products that predate the introduction of digital data recording. The material is in analogue form such as film or microfiche. The Polar Cap index (abbreviation PC index) consists of the Polar Cap North (PCN) and the Polar Cap South (PCS) index, which are derived from magnetic measurements taken at the geomagnetic observatories Qaanaaq (THL, Greenland, +85o magnetic latitude) and Vostok (VOS, Antarctica, -83o magnetic latitude), respectively. The idea behind these indices is to estimate the intensity of anti-sunward plasma convection in the polar caps. This convection is associated with electric Hall currents and consequent magnetic field variations perpendicular to the antisunward plasma flow (and related Hall current) which can be monitored at the Qaanaaq and Vostok magnetic observatories. PC aims at monitoring the energy input from solar wind to the magnetosphere (loading activity). The index is constructed in such a way that it has a linear relationship with the merging Electric Field at the magnetopause; consequently PC is given in units of mV/m as for the electric field. In August 2013, the International Association of Geomagnetism and Aeronomy (IAGA) endorsed the PC index. The endorsed PC index is accessible at pcindex.org or through WDC Copenhagen.
Country
Science Data Centre (SDC) is a service launched by Leibniz-Institute for Solarphysics (KIS). Its primary purpose is to provide a common platform for the solar community to store, access, analyse and archive solar data produced by a heterogeneous group of scientific instruments. ChroTel is a telescope to observe the solar chromosphere across the full disk. ChroTel observes the Sun pseudo-simultaneously in three channels at Ca II K, H-alpha and Helium 1083. GRIS is the spectrograph developed by IAC, installed in the German solar telescope GREGOR of the Teide Observatory. LARS is an Absolute Reference Spectrograph. It performs fiber-coupled solar observations with the high-resolution Echelle Spectrograph of the Vacuum Tower Telescope (VTT) at the Observatorio del Teide on Tenerife.
Country
The CosmoSim database provides results from cosmological simulations performed within different projects: the MultiDark and Bolshoi project, and the CLUES project. The CosmoSim webpage provides access to several cosmological simulations, with a separate database for each simulation. Simulations overview: https://www.cosmosim.org/cms/simulations/simulations-overview/ . CosmoSim is a contribution to the German Astrophysical Virtual Observatory.
KADoNiS-p database: The KADoNiS project is an online database for cross sections relevant to the s-process and p-process (γ-process). The present p-process library includes all available experimental data from (p,γ), (p,n), (α,γ), (α,n), and (α,p) reactions between 70Ge and 209Bi in or close to the respective Gamow window.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.