Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 43 result(s)
Country
Covalent DNA modifications have been found in numerous organisms and more are continually being discovered and characterized, as detection methods improve. Many of these modifications can affect the conformation of the DNA double helix, often resulting in downstream effects upon transcription factor binding. Some of these modifications have been demonstrated to be stable, while others are viewed as merely transient. DNAmod catalogues information on known DNA modifications, of which the well-known 5-methylcytosine is only one. It aims to profile modifications' properties, building upon data contained within the Chemical Entities of Biological Interest (ChEBI) database. It also provides literature citations and includes curated annotations on mapping techniques and natural occurrence information.
The Barcode of Life Data Systems (BOLD) provides DNA barcode data. BOLD's online workbench supports data validation, annotation, and publication for specimen, distributional, and molecular data. The platform consists of four main modules: a data portal, a database of barcode clusters, an educational portal, and a data collection workbench. BOLD is the go-to site for DNA-based identification. As the central informatics platform for DNA barcoding, BOLD plays a crucial role in assimilating and organizing data gathered by the international barcode research community. Two iBOL (International Barcode of Life) Working Groups are supporting the ongoing development of BOLD.
GenBank® is a comprehensive database that contains publicly available nucleotide sequences for almost 260 000 formally described species. These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.
We are working on a new version of ALFRED web interface. The current web interface will not be available from December 15th, 2023. There will be a period where a public web interface is not available for viewing ALFRED data. Expected date for the deployment of the new ALFRED web interface with minimum functions is March 1st, 2024 --------------------------------------------- ALFRED is a free, web-accessible, curated compilation of allele frequency data on DNA sequence polymorphisms in anthropologically defined human populations. ALFRED is distinct from such databases as dbSNP, which catalogs sequence variation.
4DGenome is a public database that archives and disseminates chromatin interaction data. Currently, 4DGenome contains over 8,038,247 interactions curated from both experimental studies (high throughput and individual studies) and computational predictions. It covers five organisms, Homo sapiens, Mus musculus, Drosophila melanogaster, Plasmodium falciparum, and Saccharomyces cerevisiae.
Country
The Autism Chromosome Rearrangement Database is a collection of hand curated breakpoints and other genomic features, related to autism, taken from publicly available literature: databases and unpublished data. The database is continuously updated with information from in-house experimental data as well as data from published research studies.
<<<!!!<<< The page is no longer available. This database was already retired, and on this page users could find information on how to search and use these sequences. dbSTS was an NCBI resource that contained sequence data for short genomic landmark sequences or Sequence Tagged Sites. STS sequences are incorporated into the STS Division of GenBank. >>>!!!>>>
The Protein database is a collection of sequences from several sources, including translations from annotated coding regions in GenBank, RefSeq and TPA, as well as records from SwissProt, PIR, PRF, and PDB. Protein sequences are the fundamental determinants of biological structure and function.
INTEGRALL is a web-based platform dedicated to compile information on integrons and designed to organize all the data available for these genetic structures. INTEGRALL provides a public genetic repository for sequence data and nomenclature and offers to scientists an easy and interactive access to integron's DNA sequences, their molecular arrangements as well as their genetic contexts.
The Sequence Read Archive stores the raw sequencing data from such sequencing platforms as the Roche 454 GS System, the Illumina Genome Analyzer, the Applied Biosystems SOLiD System, the Helicos Heliscope, and the Complete Genomics. It archives the sequencing data associated with RNA-Seq, ChIP-Seq, Genomic and Transcriptomic assemblies, and 16S ribosomal RNA data.
Country
The Cystic Fibrosis Mutation Database (CFTR1) was initiated by the Cystic Fibrosis Genetic Analysis Consortium in 1989 to increase and facilitate communications among CF researchers, and is maintained by the Cystic Fibrosis Centre at the Hospital for Sick Children in Toronto. The specific aim of the database is to provide up to date information about individual mutations in the CFTR gene. In a major upgrade in 2010, all known CFTR mutations and sequence variants have been converted to the standard nomenclature recommended by the Human Genome Variation Society.
Country
GSA is a data repository specialized for archiving raw sequence reads. It supports data generated from a variety of sequencing platforms ranging from Sanger sequencing machines to single-cell sequencing machines and provides data storing and sharing services free of charge for worldwide scientific communities. In addition to raw sequencing data, GSA also accommodates secondary analyzed files in acceptable formats (like BAM, VCF). Its user-friendly web interfaces simplify data entry and submitted data are roughly organized as two parts, viz., Metadata and File, where the former can be further assorted into BioProject, BioSample, Experiment and Run, and the latter contains raw sequence reads.
The European Variation Archive is an open-access database of all types of genetic variation data from all species. The EVA provides access to highly detailed, granular, raw variant data from human, with other species to follow. As of September 2017, EMBL-EBI will maintain reliable accessions for non-human genetic variation data through the European Variation Archive (EVA). NCBI's dbSNP database will continue to maintain stable identifiers for human genetic variation data only. This change will enable a more rapid turnaround for data sharing in this burgeoning field.
NCBI Datasets is a continually evolving platform designed to provide easy and intuitive access to NCBI’s sequence data and metadata. NCBI Datasets is part of the NIH Comparative Genomics Resource (CGR). CGR facilitates reliable comparative genomics analyses for all eukaryotic organisms through an NCBI Toolkit and community collaboration.
The Entrez Protein Clusters database contains annotation information, publications, structures and analysis tools for related protein sequences encoded by complete genomes. The data available in the Protein Clusters Database is generated from prokaryotic genomic studies and is intended to assist researchers studying micro-organism evolution as well as other biological sciences. Available genomes include plants and viruses as well as organelles and microbial genomes.
<<<!!!<<< NCBI announced plans to retire the Clone DB web interface. Pursuant to this retirement, starting on May 27, 2019, all web pages associated with Clone DB and CloneFinder will redirect to this blog post https://ncbiinsights.ncbi.nlm.nih.gov/?s=clone+db. Links to Clone DB from the NCBI home page will also be going away. >>>!!!>>>
The European Nucleotide Archive (ENA) captures and presents information relating to experimental workflows that are based around nucleotide sequencing. A typical workflow includes the isolation and preparation of material for sequencing, a run of a sequencing machine in which sequencing data are produced and a subsequent bioinformatic analysis pipeline. ENA records this information in a data model that covers input information (sample, experimental setup, machine configuration), output machine data (sequence traces, reads and quality scores) and interpreted information (assembly, mapping, functional annotation). Data arrive at ENA from a variety of sources. These include submissions of raw data, assembled sequences and annotation from small-scale sequencing efforts, data provision from the major European sequencing centres and routine and comprehensive exchange with our partners in the International Nucleotide Sequence Database Collaboration (INSDC). Provision of nucleotide sequence data to ENA or its INSDC partners has become a central and mandatory step in the dissemination of research findings to the scientific community. ENA works with publishers of scientific literature and funding bodies to ensure compliance with these principles and to provide optimal submission systems and data access tools that work seamlessly with the published literature.
BioModels is a repository of mathematical models of biological and biomedical systems. It hosts a vast selection of existing literature-based physiologically and pharmaceutically relevant mechanistic models in standard formats. Our mission is to provide the systems modelling community with reproducible, high-quality, freely-accessible models published in the scientific literature.
Content type(s)
While focused on supporting the scientific community, ATCC activities range widely, from repository-related operations to providing specialized services, conducting in-house R&D and intellectual property management. ATCC serves U.S. and international researchers by characterizing cell lines, bacteria, viruses, fungi and protozoa, as well as developing and evaluating assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities. Our management philosophy emphasizes customer satisfaction, value addition, cost-effective operations and competitive benchmarking for all areas of our enterprise.
The Pseudomonas Genome Database collaborates with an international panel of expert Pseudomonas researchers to provide high quality updates to the PAO1 genome annotation and make cutting edge genome analysis data available.
GeneLab is an interactive, open-access resource where scientists can upload, download, store, search, share, transfer, and analyze omics data from spaceflight and corresponding analogue experiments. Users can explore GeneLab datasets in the Data Repository, analyze data using the Analysis Platform, and create collaborative projects using the Collaborative Workspace. GeneLab promises to facilitate and improve information sharing, foster innovation, and increase the pace of scientific discovery from extremely rare and valuable space biology experiments. Discoveries made using GeneLab have begun and will continue to deepen our understanding of biology, advance the field of genomics, and help to discover cures for diseases, create better diagnostic tools, and ultimately allow astronauts to better withstand the rigors of long-duration spaceflight. GeneLab helps scientists understand how the fundamental building blocks of life itself – DNA, RNA, proteins, and metabolites – change from exposure to microgravity, radiation, and other aspects of the space environment. GeneLab does so by providing fully coordinated epigenomics, genomics, transcriptomics, proteomics, and metabolomics data alongside essential metadata describing each spaceflight and space-relevant experiment. By carefully curating and implementing best practices for data standards, users can combine individual GeneLab datasets to gain new, comprehensive insights about the effects of spaceflight on biology. In this way, GeneLab extends the scientific knowledge gained from each biological experiment conducted in space, allowing scientists from around the world to make novel discoveries and develop new hypotheses from these priceless data.