Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database access restrictions

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
On February 24, 2000, Terra began collecting what will ultimately become a new, 15-year global data set on which to base scientific investigations about our complex home planet. Together with the entire fleet of EOS spacecraft, Terra is helping scientists unravel the mysteries of climate and environmental change. TERRA's data collection instruments include: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging Spectro-Radiometer (MISR), Moderate-resolution Imaging Spectroradiometer (MODIS), Measurement of Pollution in the Troposphere (MOPITT)
Country
China Meteorological Data Service Center, an upgraded system of the meteorological data sharing network, is an important component of the underlying national science and technology platform and a main portal application system of meteorological cloud. It is an authoritative and unified shared service platform for China Meteorological Administration to open its meteorological data resources to domestic and global users, and a data supporting platform for China to open its meteorological service market and promote the sharing and efficient application of meteorological information resources as a new meteorological service system. The comprehensive meteorological database provide online and offline shared services, the existing data types including global upper-air sounding data, surface observations, ocean observations, numerical forecast products, agro-meteorological data of ground observation data encryption, aircraft soundings, numerical weather prediction analysis field data, GPS-Met, Storm 2 No, GOES-9 satellite data, soil moisture, aircraft reported sandstorm monitoring, TOVS, ATOVS, wind profilers, satellite detection information.
The International Laser Ranging Service (ILRS) provides global satellite and lunar laser ranging data and their related products to support geodetic and geophysical research activities as well as IERS products important to the maintenance of an accurate International Terrestrial Reference Frame (ITRF). The service develops the necessary global standards/specifications and encourages international adherence to its conventions. The ILRS is one of the space geodetic services of the International Association of Geodesy (IAG). The ILRS collects, merges, archives and distributes Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) observation data sets of sufficient accuracy to satisfy the objectives of a wide range of scientific, engineering, and operational applications and experimentation.
The main function of the GGSP (Galileo Geodetic Service Provider) is to provide a terrestrial reference frame, in the broadest sense of the word, to both the Galileo Core System (GCS) as well as to the Galileo User Segment (all Galileo users). This implies that the GGSP should enable all users of the Galileo System, including the most demanding ones, to access and realise the GTRF with the precision required for their specific application. Furthermore, the GGSP must ensure the proper interfaces to all users of the GTRF, especially the geodetic and scientific user groups. In addition the GGSP must ensure the adherence to the defined standards of all its products. Last but not least the GGSP will play a key role to create awareness of the GTRF and educate users in the usage and realisation of the GTRF.
Remote Sensing Systems is a world leader in processing and analyzing microwave data from satellite microwave sensors. We specialize in algorithm development, instrument calibration, ocean product development, and product validation. We have worked with more than 30 satellite microwave radiometer, sounder, and scatterometer instruments over the past 40 years. Currently, we operationally produce satellite retrievals for SSMIS, AMSR2, WindSat, and ASCAT. The geophysical retrievals obtained from these sensors are made available in near-real-time (NRT) to the global scientific community and general public via FTP and this web site.