Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 21 result(s)
The Mouse Tumor Biology (MTB) Database supports the use of the mouse as a model system of hereditary cancer by providing electronic access to: Information on endogenous spontaneous and induced tumors in mice, including tumor frequency & latency data, Information on genetically defined mice (inbred, hybrid, mutant, and genetically engineered strains of mice) in which tumors arise, Information on genetic factors associated with tumor susceptibility in mice and somatic genetic-mutations observed in the tumors, Tumor pathology reports and images, References, supporting MTB data and Links to other online resources for cancer.
The MMRRC is the nation’s premier national public repository system for mutant mice. Funded by the NIH continuously since 1999, the MMRRC archives and distributes scientifically valuable spontaneous and induced mutant mouse strains and ES cell lines for use by the biomedical research community. The MMRRC consists of a national network of breeding and distribution repositories and an Informatics Coordination and Service Center located at 4 major academic centers across the nation. The MMRRC is committed to upholding the highest standards of experimental design and quality control to optimize the reproducibility of research studies using mutant mice.
EMAGE (e-Mouse Atlas of Gene Expression) is an online biological database of gene expression data in the developing mouse (Mus musculus) embryo. The data held in EMAGE is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. EMAGE is a freely available web-based resource funded by the Medical Research Council (UK) and based at the MRC Human Genetics Unit in the Institute of Genetics and Molecular Medicine, Edinburgh, UK.
The IMPC is a confederation of international mouse phenotyping projects working towards the agreed goals of the consortium: To undertake the phenotyping of 20,000 mouse mutants over a ten year period, providing the first functional annotation of a mammalian genome. Maintain and expand a world-wide consortium of institutions with capacity and expertise to produce germ line transmission of targeted knockout mutations in embryonic stem cells for 20,000 known and predicted mouse genes. Test each mutant mouse line through a broad based primary phenotyping pipeline in all the major adult organ systems and most areas of major human disease. Through this activity and employing data annotation tools, systematically aim to discover and ascribe biological function to each gene, driving new ideas and underpinning future research into biological systems; Maintain and expand collaborative “networks” with specialist phenotyping consortia or laboratories, providing standardized secondary level phenotyping that enriches the primary dataset, and end-user, project specific tertiary level phenotyping that adds value to the mammalian gene functional annotation and fosters hypothesis driven research; and Provide a centralized data centre and portal for free, unrestricted access to primary and secondary data by the scientific community, promoting sharing of data, genotype-phenotype annotation, standard operating protocols, and the development of open source data analysis tools. Members of the IMPC may include research centers, funding organizations and corporations.
The European Mouse Mutant Archive – EMMA is a non-profit repository for the collection, archiving (via cryopreservation) and distribution of relevant mutant mouse strains essential for basic biomedical research. The laboratory mouse is the most important mammalian model for studying genetic and multi-factorial diseases in man. The comprehensive physical and data resources of EMMA support basic biomedical and preclinical research, and the available research tools and mouse models of human disease offer the opportunity to develop a better understanding of molecular disease mechanisms and may provide the foundation for the development of diagnostic, prognostic and therapeutic strategies.
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is a consortium of laboratories working to provide the scientific and medical community with tools to facilitate research. The key components are: (1) a molecular atlas of gene expression for the developing organs of the GenitoUrinary (GU) tract; (2) a high resolution molecular anatomy that highlights development of the GU system; (3) mouse strains to facilitate developmental and functional studies within the GU system; (4) tutorials describing GU organogenesis; and (5) rapid access to primary data via the GUDMAP database.
DNASU is a central repository for plasmid clones and collections. Currently we store and distribute over 200,000 plasmids including 75,000 human and mouse plasmids, full genome collections, the protein expression plasmids from the Protein Structure Initiative as the PSI: Biology Material Repository (PSI : Biology-MR), and both small and large collections from individual researchers. We are also a founding member and distributor of the ORFeome Collaboration plasmid collection.
BioGPS is a gene portal built with two guiding principles in mind -- customizability and extensibility. It is a complete resource for learning about gene and protein function. A free extensible and customizable gene annotation portal, a complete resource for learning about gene and protein function.
Country
Thousands of circular RNAs (circRNAs) have recently been shown to be expressed in eukaryotic cells [Salzman et al. 2012, Jeck et al. 2013, Memczak et al. 2013, Salzman et al. 2013]. Here you can explore public circRNA datasets and download the custom python scripts needed to discover circRNAs in your own (ribominus) RNA-seq data.
<<<!!!<<< As of Aug. 15, 2019, we are suspending plasmid distribution from the collection. If you would like to request BioPlex ORF clones (Harper lab) or if you identify other clones in our collection for which you cannot find an alternative, please email us at plasmidhelp@hms.harvard.edu. >>>!!!>>>
The International Human Epigenome Consortium (IHEC) makes available comprehensive sets of reference epigenomes relevant to health and disease. The IHEC Data Portal can be used to view, search and download the data already released by the different IHEC-associated projects.
The miRBase database is a searchable database of published miRNA sequences and annotation. Each entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript (termed mir in the database), with information on the location and sequence of the mature miRNA sequence (termed miR). Both hairpin and mature sequences are available for searching and browsing, and entries can also be retrieved by name, keyword, references and annotation. All sequence and annotation data are also available for download. The miRBase Registry provides miRNA gene hunters with unique names for novel miRNA genes prior to publication of results.
I2D (Interologous Interaction Database) is an on-line database of known and predicted mammalian and eukaryotic protein-protein interactions. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered "predictions". It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. I2D includes data for S. cerevisiae, C. elegans, D. melonogaster, R. norvegicus, M. musculus, and H. sapiens.
The Cellosaurus is a knowledge resource on cell lines. It attempts to describe all cell lines used in biomedical research. Its scope includes: Immortalized cell lines, Naturally immortal cell lines (example: stem cell lines), Finite life cell lines when those are distributed and used widely, Vertebrate cell line with an emphasis on human, mouse and rat cell lines, Invertebrate (insects and ticks) cell lines. Its scope does not include: Primary cell lines (with the exception of the finite life cell lines described above), Plant cell lines. Cellosaurus was initiated to be used as a cell line controlled vocabulary in the context of the neXtProt knowledgebase, but it quickly become apparent that there was a need for a cell line knowledge resource that would serve the needs of individual researchers, cell line distributors and bioinformatic resources. This leads to an increase of the scope and depth of the content of the Cellosaurus. The Cellosaurus is a participant of the Resource Identification Initiative and contributes actively to the work of the International Cell Line Authentication Committee (ICLAC). It is a Global Core Biodata Resource, an ELIXIR Core Data Resource and an IRDiRC Recognized Resource.
>>> !!! the repository is offline !!! <<< More information see: https://dknet.org/about/NURSA_Archive All NURSA-biocurated transcriptomic datasets have been preserved for data mining in SPP through an enhanced and expanded version of Transcriptomine named Ominer. To access these datasets, dkNET provides users with the information of 527 transcriptomic datasets that contain data related to nuclear receptors and nuclear receptor coregulators in the NURSA Datasets table view and redirects users to the current SPP dataset page. Once users find the specific dataset of research interest, users can download the dataset by clicking DOI and then clicking the Download Dataset button at the Signaling Pathways Project webpage. See https://www.re3data.org/repository/r3d100013650
CODEX is a database of NGS mouse and human experiments. Although, the main focus of CODEX is Haematopoiesis and Embryonic systems, the database includes a large variety of cell types. In addition to the publically available data, CODEX also includes a private site hosting non-published data. CODEX provides access to processed and curated NGS experiments. To use CODEX: (i) select a specialized repository (HAEMCODE or ESCODE) or choose the whole compendium (CODEX), then (ii) filter by organism and (iii) choose how to explore the database.
dictyBase is an integrated genetic and literature database that contains published Dictyostelium discoideum literature, genes, expressed sequence tags (ESTs), as well as the chromosomal and mitochondrial genome sequences. Direct access to the genome browser, a Blast search tool, the Dictyostelium Stock Center, research tools, colleague databases, and much much more are just a mouse click away. Dictybase is a genome portal for the Amoebozoa. dictyBase is funded by a grant from the National Institute for General Medical Sciences.
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.
Tthe Lipidomics Gateway - a free, comprehensive website for researchers interested in lipid biology, provided by the LIPID MAPS (Lipid Metabolites and Pathways Strategy) Consortium. The LIPID MAPS Lipidomics Gateway provides a rich collection of information and resources to help you stay abreast of the latest developments in this rapidly expanding field. LIPID Metabolites And Pathways Strategy (LIPID MAPS®) is a multi-institutional effort created in 2003 to identify and quantitate, using a systems biology approach and sophisticated mass spectrometers, all of the major — and many minor — lipid species in mammalian cells, as well as to quantitate the changes in these species in response to perturbation. The ultimate goal of our research is to better understand lipid metabolism and the active role lipids play in diabetes, stroke, cancer, arthritis, Alzheimer's and other lipid-based diseases in order to facilitate development of more effective treatments. Since our inception, we have made great strides toward defining the "lipidome" (an inventory of the thousands of individual lipid molecular species) in the mouse macrophage. We have also worked to make lipid analysis easier and more accessible for the broader scientific community and to advance a robust research infrastructure for the international research community. We share new lipidomics findings and methods, hold annual meetings open to all interested investigators, and are exploring joint efforts to extend the use of these powerful new methods to new applications