Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 20 result(s)
Country
The INESC TEC data repository showcases datasets produced or used by INESC TEC researchers and their partners. The repository is organized in four groups (institutional clusters). Computer Science, Power and Energy, Network and Intelligent Systems and Power and Energy.
CORD is Cranfield University's research data repository, for secure preservation of institutional research data outputs. Cranfield is an exclusively postgraduate university that is a global leader for transformational research in technology and management. We are focused on the specialist themes of aerospace, defence and security, energy and power, environment and agrifood, manufacturing, transport systems, and water. The Cranfield School of Management is world leader in management education and research.
Country
The SMU Dataverse is a research data repository for our faculty, students, and staff. Files are held in a secure environment on Canadian servers. Researchers can choose to make content available publicly, to specific individuals, or to keep it locked.
Country
Rodare is the institutional research data repository at HZDR (Helmholtz-Zentrum Dresden-Rossendorf). Rodare allows HZDR researchers to upload their research software and data and enrich those with metadata to make them findable, accessible, interoperable and retrievable (FAIR). By publishing all associated research software and data via Rodare research reproducibility can be improved. Uploads receive a Digital Object Identfier (DOI) and can be harvested via a OAI-PMH interface.
The Extreme Light Infrastructure (ELI) is the world's most advanced laser-based research infrastructure. The ELI Facilities provide access to a broad range of world-class high-power, high repetition-rate laser systems and secondary sources. This enables cutting-edge research and new regimes of high intensity physics in physical, chemical, medical, and materials sciences.
Country
The CSSDP project provides space scientists with access to a wide range of space data, observations, and investigative tools. It provides a seamless, single- point of access to these resources through a custom web portal. To date, more than 350 scientists are registered users of the CSSDP portal. The project integrates data from sources such as the Canadian Geospace Monitoring Program and anticipates serving data from the NASA THEMIS satellite probes, the Canadian High-Artic Ionospheric Network (CHAIN), and the Alberta- based Enhanced Polar Outflow Probe (ePOP) satellite mission. This collection and presentation of space data is used to study the influence of the sun on near- Earth space environment, including phenomena such as geomagnetic storms, which cause the northern and southern lights. Geomagnetic storms are also known for often causing power outages, disturbances in polar communications, and the failure of satellites. The effects of space weather can also cause transpolar flight paths to be diverted, adding significant fuel costs to airlines and disruptions for travellers.
Neuroimaging Tools and Resources Collaboratory (NITRC) is currently a free one-stop-shop environment for science researchers that need resources such as neuroimaging analysis software, publicly available data sets, and computing power. Since its debut in 2007, NITRC has helped the neuroscience community to use software and data produced from research that, before NITRC, was routinely lost or disregarded, to make further discoveries. NITRC provides free access to data and enables pay-per-use cloud-based access to unlimited computing power, enabling worldwide scientific collaboration with minimal startup and cost. With NITRC and its components—the Resources Registry (NITRC-R), Image Repository (NITRC-IR), and Computational Environment (NITRC-CE)—a researcher can obtain pilot or proof-of-concept data to validate a hypothesis for a few dollars.
Content type(s)
Diamond Light Source is the UK’s national synchrotron, located at the Harwell Science and Innovation Campus in Oxfordshire. It works like a giant microscope, harnessing the power of electrons to produce bright light that scientists can use to study anything from fossils to jet engines to viruses and vaccines. ICAT allows you to browse and download archived data from instrument experiments at Diamond Light Source.
Country
The German Neuroinformatics Node's data infrastructure (GIN) services provide a platform for comprehensive and reproducible management and sharing of neuroscience data. Building on well established versioning technology, GIN offers the power of a web based repository management service combined with a distributed file storage. The service addresses the range of research data workflows starting from data analysis on the local workstation to remote collaboration and data publication.
Jason is a remote-controlled deep-diving vessel that gives shipboard scientists immediate, real-time access to the sea floor. Instead of making short, expensive dives in a submarine, scientists can stay on deck and guide Jason as deep as 6,500 meters (4 miles) to explore for days on end. Jason is a type of remotely operated vehicle (ROV), a free-swimming vessel connected by a long fiberoptic tether to its research ship. The 10-km (6 mile) tether delivers power and instructions to Jason and fetches data from it.
Cell phones have become an important platform for the understanding of social dynamics and influence, because of their pervasiveness, sensing capabilities, and computational power. Many applications have emerged in recent years in mobile health, mobile banking, location based services, media democracy, and social movements. With these new capabilities, we can potentially be able to identify exact points and times of infection for diseases, determine who most influences us to gain weight or become healthier, know exactly how information flows among employees and productivity emerges in our work spaces, and understand how rumors spread. In an attempt to address these challenges, we release several mobile data sets here in "Reality Commons" that contain the dynamics of several communities of about 100 people each. We invite researchers to propose and submit their own applications of the data to demonstrate the scientific and business values of these data sets, suggest how to meaningfully extend these experiments to larger populations, and develop the math that fits agent-based models or systems dynamics models to larger populations. These data sets were collected with tools developed in the MIT Human Dynamics Lab and are now available as open source projects or at cost.
In 2003, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at NIH established Data, Biosample, and Genetic Repositories to increase the impact of current and previously funded NIDDK studies by making their data and biospecimens available to the broader scientific community. These Repositories enable scientists not involved in the original study to test new hypotheses without any new data or biospecimen collection, and they provide the opportunity to pool data across several studies to increase the power of statistical analyses. In addition, most NIDDK-funded studies are collecting genetic biospecimens and carrying out high-throughput genotyping making it possible for other scientists to use Repository resources to match genotypes to phenotypes and to perform informative genetic analyses.
Repository for New Mexico Experimental Program to Stimulate Competitive Research Data Collection. Provides access to data generated by the Energize New Mexico project as well as data gathered in our previous project that focused on Climate Change Impacts (RII 3). NM EPSCoR contributes its data to the DataONE network as a member node: https://search.dataone.org/#profile/NMEPSCOR
It is a platform for supporting Open Data initiative of Government of Odisha, intends to publish datasets collected by them for public use. It also supports widely used file formats that are suitable for machine processing, thus gives avenues for many more innovative uses of Government Data in different perspective. This portal has been created under Software as A Service (SaaS) model of Open Government Data (OGD) Platform India of NIC. The data available in the portal are owned by various Departments/Organization of Government of Odisha. It follows principles on which data sharing and accessibility need to be based include: Openness, Flexibility, Transparency, Quality, Security and Machine-readable.
IEEE DataPort™ is a universally accessible online data repository created, owned, and supported by IEEE, the world’s largest technical professional organization. It enables all researchers and data owners to upload their dataset without cost. IEEE DataPort makes data available in three ways: standard datasets, open access datasets, and data competition datasets. By default, all "standard" datasets that are uploaded are accessible to paid IEEE DataPort subscribers. Data owners have an option to pay a fee to make their dataset “open access”, so it is available to all IEEE DataPort users (no subscription required). The third option is to host a "data competition" and make a dataset accessible for free for a specific duration with instructions for the data competition and how to participate. IEEE DataPort provides workflows for uploading data, searching, and accessing data, and initiating or participating in data competitions. All datasets are stored on Amazon AWS S3, and each dataset uploaded by an individual can be up to 2TB in size. Institutional subscriptions are available to the platform to make it easy for all members of a given institution to utilize the platform and upload datasets.
Country
Ocean Networks Canada maintains several observatories installed in three different regions in the world's oceans. All three observatories are cabled systems that can provide power and high bandwidth communiction paths to sensors in the ocean. The infrastructure supports near real-time observations from multiple instruments and locations distributed across the Arctic, NEPTUNE and VENUS observatory networks. These observatories collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex Earth processes in ways not previously possible.
<<<!!!<<< This repository is no longer available. >>>!!!>>> TRMM is a research satellite designed to improve our understanding of the distribution and variability of precipitation within the tropics as part of the water cycle in the current climate system. By covering the tropical and sub-tropical regions of the Earth, TRMM provides much needed information on rainfall and its associated heat release that helps to power the global atmospheric circulation that shapes both weather and climate. In coordination with other satellites in NASA's Earth Observing System, TRMM provides important precipitation information using several space-borne instruments to increase our understanding of the interactions between water vapor, clouds, and precipitation, that are central to regulating Earth's climate. The TRMM mission ended in 2015 and final TRMM multi-satellite precipitation analyses (TMPA, product 3B42/3B43) data processing will end December 31st, 2019. As a result, this TRMM webpage is in the process of being retired and some TRMM imagery may not be displaying correctly. Some of the content will be moved to the Precipitation Measurement Missions website https://gpm.nasa.gov/ and our team is exploring ways to provide some of the real-time products using GPM data. Please contact us if you have any additional questions.
Country
The National High Energy Physics Science Data Center (NHEPSDC) is a repository for high-energy physics. In 2019, it was designated as a scientific data center at the national level by the Ministry of Science and Technology of China (MOST). NHEPSDC is constructed and operated by the Institute of High Energy Physics (IHEP) of the Chinese Academy of Sciences (CAS). NHEPSDC consists of a main data center in Beijing, a branch center in Guangdong-Hong Kong-Macao Greater Bay Area, and a branch center in Huairou District of Beijing. The mission of NHEPSDC is to provide the services of data collection, archiving, long-term preservation, access and sharing, software tools, and data analysis. The services of NHEPSDC are mainly for high-energy physics and related scientific research activities. The data collected can be roughly divided into the following two categories: one is the raw data from large scientific facilities, and the other is data generated from general scientific and technological projects (usually supported by government funding), hereafter referred to as generic data. More than 70 people work in NHEPSDC now, with 18 in high-energy physics, 17 in computer science, 15 in software engineering, 20 in data management and some other operation engineers. NHEPSDC is equipped with a hierarchical storage system, high-performance computing power, high bandwidth domestic and international network links, and a professional service support system. In the past three years, the average data increment is about 10 PB per year. By integrating data resources with the IT environment, a state-of-art data process platform is provided to users for scientific research, the volume of data accessed every year is more than 400 PB with more than 10 million visits.