Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Database access

Data licenses

Data upload

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 7 result(s)
>>>!!!<<< 2019-12-04: The repository is no longer available >>>!!!<<< Presented here are excitation cross sections measured for a select number of transitions using the Merged Electron-Ion Beams Energy Loss (MEIBEL) experiment. This is a collaboration of JILA and the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL), where the apparatus is located. Since there exist a nearly infinite number of transitions in multicharged ions we have chosen a few that serve as benchmarks for theoretical efforts. Of particular interest are forbidden transitions which are often dominated by dielectronic resonances whose positions and magnitudes are difficult to predict theoretically.
Physical Reference Data compiles physical data and biblographic sources: Physical constants, atomic spectroscopy data, molecular spectroscopic data, X-Ray and Gamma-Ray data, nuclear physics data etc.
>>>!!!<<< 2019-12-04: The repository is no longer available >>>!!!<<< Presented here are experimental ionization cross sections measured using the Electron-Ion Crossed Beams apparatus in the Multicharged Ion Research Facility (MIRF) at the Physics Division of Oak Ridge National Laboratory (ORNL). The data are given in both graphical and tabular form along with the reference to the original publication of the experimental results. Also presented in the figures are theoretical cross sections supporting the experiments.
Interface to Los Alamos Atomic Physics Codes is your gateway to the set of atomic physics codes developed at the Los Alamos National Laboratory. The well known Hartree-Fock method of R.D. Cowan, developed at Group home page of the Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated.
This is a compilation of approximately 923,000 allowed, intercombination and forbidden atomic transitions with wavelengths in the range from 0.5 Å to 1000 µm. It's primary intention is to allow the identification of observed atomic absorption or emission features. The wavelengths in this list are all calculated from the difference between the energy of the upper and lower level of the transition. No attempt has been made to include observed wavelengths. Most of the atomic energy level data have been taken from the Atomic Spectra Database provided by the National Institute of Standards and Technology (NIST).
The Atomic Spectra Database (ASD) contains data for radiative transitions and energy levels in atoms and atomic ions. Data are included for observed transitions and energy levels of most of the known chemical elements. ASD contains data on spectral lines with wavelengths from about 0.2 Å (ångströms) to 60 m (meters). For many lines, ASD includes radiative transition probabilities. The energy level data include the ground states and ionization energies for all spectra. Except where noted, the data have been critically evaluated by NIST. For most spectra, wavelengths, transition probabilities, relative intensities, and energy levels are integrated, so that all the available information for a given transition is incorporated under a single listing. For classified lines, in addition to the observed wavelength, ASD includes the Ritz wavelength, which is the wavelength derived from the energy levels. The Ritz wavelengths are usually more precise than the observed ones. Line lists containing classified lines can be ordered by either multiplet (for a given spectrum) or wavelength. For some spectra, ASD includes lists of prominent lines with wavelengths and relative intensities but without energy-level classifications.