Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 8 result(s)
The Infrared Space Observatory (ISO) is designed to provide detailed infrared properties of selected Galactic and extragalactic sources. The sensitivity of the telescopic system is about one thousand times superior to that of the Infrared Astronomical Satellite (IRAS), since the ISO telescope enables integration of infrared flux from a source for several hours. Density waves in the interstellar medium, its role in star formation, the giant planets, asteroids, and comets of the solar system are among the objects of investigation. ISO was operated as an observatory with the majority of its observing time being distributed to the general astronomical community. One of the consequences of this is that the data set is not homogeneous, as would be expected from a survey. The observational data underwent sophisticated data processing, including validation and accuracy analysis. In total, the ISO Data Archive contains about 30,000 standard observations, 120,000 parallel, serendipity and calibration observations and 17,000 engineering measurements. In addition to the observational data products, the archive also contains satellite data, documentation, data of historic aspects and externally derived products, for a total of more than 400 GBytes stored on magnetic disks. The ISO Data Archive is constantly being improved both in contents and functionality throughout the Active Archive Phase, ending in December 2006.
As with most biomedical databases, the first step is to identify relevant data from the research community. The Monarch Initiative is focused primarily on phenotype-related resources. We bring in data associated with those phenotypes so that our users can begin to make connections among other biological entities of interest. We import data from a variety of data sources. With many resources integrated into a single database, we can join across the various data sources to produce integrated views. We have started with the big players including ClinVar and OMIM, but are equally interested in boutique databases. You can learn more about the sources of data that populate our system from our data sources page https://monarchinitiative.org/about/sources.
CERN, DESY, Fermilab and SLAC have built the next-generation High Energy Physics (HEP) information system, INSPIRE. It combines the successful SPIRES database content, curated at DESY, Fermilab and SLAC, with the Invenio digital library technology developed at CERN. INSPIRE is run by a collaboration of CERN, DESY, Fermilab, IHEP, IN2P3 and SLAC, and interacts closely with HEP publishers, arXiv.org, NASA-ADS, PDG, HEPDATA and other information resources. INSPIRE represents a natural evolution of scholarly communication, built on successful community-based information systems, and provides a vision for information management in other fields of science.
AMCSD is an interface to a crystal structure database that includes every structure published in the American Mineralogist, The Canadian Mineralogist, European Journal of Mineralogy and Physics and Chemistry of Minerals, as well as selected datasets from other journals. The database is maintained under the care of the Mineralogical Society of America and the Mineralogical Association of Canada, and financed by the National Science Foundation. You may search by a mineral of your choice, or choose a mineral from a complete list to help aid your research.
DBpedia is a crowd-sourced community effort to extract structured information from Wikipedia and make this information available on the Web. DBpedia allows you to ask sophisticated queries against Wikipedia, and to link the different data sets on the Web to Wikipedia data. We hope that this work will make it easier for the huge amount of information in Wikipedia to be used in some new interesting ways. Furthermore, it might inspire new mechanisms for navigating, linking, and improving the encyclopedia itself.
This project is an open invitation to anyone and everyone to participate in a decentralized effort to explore the opportunities of open science in neuroimaging. We aim to document how much (scientific) value can be generated from a data release — from the publication of scientific findings derived from this dataset, algorithms and methods evaluated on this dataset, and/or extensions of this dataset by acquisition and incorporation of new data. The project involves the processing of acoustic stimuli. In this study, the scientists have demonstrated an audiodescription of classic "Forrest Gump" to subjects, while researchers using functional magnetic resonance imaging (fMRI) have captured the brain activity of test candidates in the processing of language, music, emotions, memories and pictorial representations.In collaboration with various labs in Magdeburg we acquired and published what is probably the most comprehensive sample of brain activation patterns of natural language processing. Volunteers listened to a two-hour audio movie version of the Hollywood feature film "Forrest Gump" in a 7T MRI scanner. High-resolution brain activation patterns and physiological measurements were recorded continuously. These data have been placed into the public domain, and are freely available to the scientific community and the general public.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
Welcome to INTERMAGNET - the global network of observatories, monitoring the Earth's magnetic field. At this site you can find data and information from geomagnetic observatories around the world. The INTERMAGNET programme exists to establish a global network of cooperating digital magnetic observatories, adopting modern standard specifications for measuring and recording equipment, in order to facilitate data exchanges and the production of geomagnetic products in close to real time.