Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database access restrictions

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 5 result(s)
Country
Applying the Terrestrial Systems Modeling Platform, TerrSysMP, this dataset consists of the first simulated long-term (1989-2018), high-resolution (~12.5km) terrestrial system climatology over Europe, which comprises variables from groundwater across the land surface to the top of atmosphere (G2A). This data set constitutes a near-natural realization of the European terrestrial system, which cannot be obtained from observations, and can, thus, serve as a reference for global change simulations including human water use and climate change.
Country
The Jülich Observatory for Cloud Evolution (JOYCE) operates ground-based active and passive remote sensing instruments for cloud and precipitation observations. ​JOYCE is based on a long-term successful collaboration between the University of Cologne, the University of Bonn and the Research Centre Jülich. Since 2017 JOYCE is transformed into a Core Facility (JOYCE - CF) funded by the DFG (Deutsche Forschungsgemeinschaft) with the aim of high quality radar and passive microwave observations of the atmosphere. JOYCE will serve as a reference center for best practices in data acquisition, storage and distribution. JOYCE instrumentation aims to observe spatial and temporal variability of atmospheric water cycle variables.
Country
The arctic data archive system (ADS) collects observation data and modeling products obtained by various Japanese research projects and gives researchers to access the results. By centrally managing a wide variety of Arctic observation data, we promote the use of data across multiple disciplines. Researchers use these integrated databases to clarify the mechanisms of environmental change in the atmosphere, ocean, land-surface and cryosphere. That ADS will be provide an opportunity of collaboration between modelers and field scientists, can be expected.
Country
GEOMAR Helmholtz Centre for Ocean Research Kiel is one of the leading marine science institutions in Europe. GEOMAR investigates the chemical, physical, biological, and geological processes in the oceans, as well as their interactions with the seafloor and the atmosphere. OceanRep is an open access digital collection containing the research output of GEOMAR staff and students. Included are journal articles, conference papers, book chapters, theses and more, - with fulltext, if available. Research data are linked to the publications entries.
Country
BLLAST is a research programme aimed at exploring the late afternoon transition of the atmospheric boundary layer. The late afternoon period of the diurnal cycle of the boundary layer is poorly understood. This is yet an important transition period that impacts the transport and dillution of water vapour and trace species. The main questions adressed by the project are: - How the turbulence activity fades when heating by the surface decreases? - What is the impact on the transport of chemical species? - How relevant processes can be represented in numerical models? To answer all these questions, a field campaign was carried out during the summer of 2011 (from June 14 to July 8). Many observation systems were then deployed and operated by research teams coming from France and abroad. They were spanning a large spectrum of space and time scales in order to achieve a comprehensive description of the boundary layer processes. The observation strategy consisted in intensifying the operations in the late afternoon with tethered balloons, resarch aircrafts and UAVs.