Filter
Reset all

Subjects

Content Types

Countries

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

PID systems

Provider types

Quality management

Repository languages

Software

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
<<<!!!<<< This repository is no longer available. This record is out-dated >>>!!!>>> Science3D is an Open Access project to archive and curate scientific data and make them available to everyone interested in scientific endeavours. Science3D focusses mainly on 3D tomography data from biological samples, simply because theses object make it comparably easy to understand the concepts and techniques. The data come primarily from the imaging beamlines of the Helmholtz Center Geesthacht (HZG), which make use of the uniquely bright and coherent X-rays of the Petra3 synchrotron. Petra3 - like many other photon and neutron sources in Europe and World-wide - is a fantastic instrument to investigate the microscopic detail of matter and organisms. The experiments at photon science beamlines hence provide unique insights into all kind of scientific fields, ranging from medical applications to plasma physics. The success of these experiments demands enormous efforts of the scientists and quite some investments
The main goal of the CLUES-project is to provide constrained simulations of the local universe designed to be used as a numerical laboratory of the current paradigm. The simulations will be used for unprecedented analysis of the complex dark matter and gasdynamical processes which govern the formation of galaxies. The predictions of these experiments can be easily compared with the detailed observations of our galactic neighborhood. Some of the CLUES data is now publicly available via the CosmoSim database (https://www.cosmosim.org/). This includes AHF halo catalogues from the Box 64, WMAP3 resimulations of the Local Group with 40963 particle resolution.
When published in 2005, the Millennium Run was the largest ever simulation of the formation of structure within the ΛCDM cosmology. It uses 10(10) particles to follow the dark matter distribution in a cubic region 500h(−1)Mpc on a side, and has a spatial resolution of 5h−1kpc. Application of simplified modelling techniques to the stored output of this calculation allows the formation and evolution of the ~10(7) galaxies more luminous than the Small Magellanic Cloud to be simulated for a variety of assumptions about the detailed physics involved. As part of the activities of the German Astrophysical Virtual Observatory we have created relational databases to store the detailed assembly histories both of all the haloes and subhaloes resolved by the simulation, and of all the galaxies that form within these structures for two independent models of the galaxy formation physics. We have implemented a Structured Query Language (SQL) server on these databases. This allows easy access to many properties of the galaxies and halos, as well as to the spatial and temporal relations between them. Information is output in table format compatible with standard Virtual Observatory tools. With this announcement (from 1/8/2006) we are making these structures fully accessible to all users. Interested scientists can learn SQL and test queries on a small, openly accessible version of the Millennium Run (with volume 1/512 that of the full simulation). They can then request accounts to run similar queries on the databases for the full simulations. In 2008 and 2012 the simulations were repeated.