• * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 3 result(s)
Reference anatomies of the brain and corresponding atlases play a central role in experimental neuroimaging workflows and are the foundation for reporting standardized results. The choice of such references —i.e., templates— and atlases is one relevant source of methodological variability across studies, which has recently been brought to attention as an important challenge to reproducibility in neuroscience. TemplateFlow is a publicly available framework for human and nonhuman brain models. The framework combines an open database with software for access, management, and vetting, allowing scientists to distribute their resources under FAIR —findable, accessible, interoperable, reusable— principles. TemplateFlow supports a multifaceted insight into brains across species, and enables multiverse analyses testing whether results generalize across standard references, scales, and in the long term, species, thereby contributing to increasing the reliability of neuroimaging results.
BrainMaps.org, launched in May 2005, is an interactive multiresolution next-generation brain atlas that is based on over 20 million megapixels of sub-micron resolution, annotated, scanned images of serial sections of both primate and non-primate brains and that is integrated with a high-speed database for querying and retrieving data about brain structure and function over the internet. Currently featured are complete brain atlas datasets for various species, including Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, and Tyto alba.
The Pennsieve platform is a cloud-based scientific data management platform focused on integrating complex datasets, fostering collaboration and publishing scientific data according to all FAIR principles of data sharing. The platform is developed to enable individual labs, consortiums, or inter-institutional projects to manage, share and curate data in a secure cloud-based environment and to integrate complex metadata associated with scientific files into a high-quality interconnected data ecosystem. The platform is used as the backend for a number of public repositories including the NIH SPARC Portal and Pennsieve Discover repositories. It supports flexible metadata schemas and a large number of scientific file-formats and modalities.