Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 9 result(s)
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. The observations and forecasts produced by the service support all marine applications, including: Marine safety; Marine resources; Coastal and marine environment; Weather, seasonal forecasting and climate. For instance, the provision of data on currents, winds and sea ice help to improve ship routing services, offshore operations or search and rescue operations, thus contributing to marine safety. The service also contributes to the protection and the sustainable management of living marine resources in particular for aquaculture, sustainable fisheries management or regional fishery organisations decision-making process. Physical and marine biogeochemical components are useful for water quality monitoring and pollution control. Sea level rise is a key indicator of climate change and helps to assess coastal erosion. Sea surface temperature elevation has direct consequences on marine ecosystems and appearance of tropical cyclones. As a result of this, the service supports a wide range of coastal and marine environment applications. Many of the data delivered by the service (e.g. temperature, salinity, sea level, currents, wind and sea ice) also play a crucial role in the domain of weather, climate and seasonal forecasting.
ScienceBase provides access to aggregated information derived from many data and information domains, including feeds from existing data systems, metadata catalogs, and scientists contributing new and original content. ScienceBase architecture is designed to help science teams and data practitioners centralize their data and information resources to create a foundation needed for their work. ScienceBase, both original software and engineered components, is released as an open source project to promote involvement from the larger scientific programming community both inside and outside the USGS.
<<<!!!<<< This repository is no longer available. The Environmental Dataset Gateway (EDG) has provided access to EPA's Open Data resources. Metadata records contributed by EPA Regions, Program Offices, and Research Laboratories that link to geospatial and non-geospatial resources (e.g., data, Web services, or applications) are now discoverable through Data.gov. https://www.re3data.org/repository/r3d100010078 >>>!!!>>>
The Solar Dynamics Observatory (SDO) studies the solar atmosphere on small scales of space and time, in multiple wavelengths. This is a searchable database of all SDO data, including citizen scientist images, space weather and near real time data, and helioseismology data.
Country
Trent University Dataverse is a research data repository for our faculty, students and staff. Files are held in a secure environment on Canadian servers. The platform makes it possible for researchers to deposit data, create appropriate metadata, and version documents as they work. Researchers can choose to make content available publicly, to specific individuals, or to keep it locked.
myExperiment is a collaborative environment where scientists can safely publish their workflows and in silico experiments, share them with groups and find those of others. Workflows, other digital objects and bundles (called Packs) can now be swapped, sorted and searched like photos and videos on the Web. Unlike Facebook or MySpace, myExperiment fully understands the needs of the researcher and makes it really easy for the next generation of scientists to contribute to a pool of scientific methods, build communities and form relationships — reducing time-to-experiment, sharing expertise and avoiding reinvention. myExperiment is now the largest public repository of scientific workflows.
Country
The main focus of tambora.org is Historical Climatology. Years of meticulous work in this field in research groups around the world have resulted in large data collections on climatic parameters such as temperature, precipitation, storms, floods, etc. with different regional, temporal and thematic foci. tambora.org enables researchers to collaboratively interpret the information derived from historical sources. It provides a database for original text quotations together with bibliographic references and the extracted places, dates and coded climate and environmental information.
The DesignSafe Data Depot Repository (DDR) is the platform for curation and publication of datasets generated in the course of natural hazards research. The DDR is an open access data repository that enables data producers to safely store, share, organize, and describe research data, towards permanent publication, distribution, and impact evaluation. The DDR allows data consumers to discover, search for, access, and reuse published data in an effort to accelerate research discovery. It is a component of the DesignSafe cyberinfrastructure, which represents a comprehensive research environment that provides cloud-based tools to manage, analyze, curate, and publish critical data for research to understand the impacts of natural hazards. DesignSafe is part of the NSF-supported Natural Hazards Engineering Research Infrastructure (NHERI), and aligns with its mission to provide the natural hazards research community with open access, shared-use scholarship, education, and community resources aimed at supporting civil and social infrastructure prior to, during, and following natural disasters. It serves a broad national and international audience of natural hazard researchers (both engineers and social scientists), students, practitioners, policy makers, as well as the general public. It has been in operation since 2016, and also provides access to legacy data dating from about 2005. These legacy data were generated as part of the NSF-supported Network for Earthquake Engineering Simulation (NEES), a predecessor to NHERI. Legacy data and metadata belonging to NEES were transferred to the DDR for continuous preservation and access.