Filter
Reset all

Subjects

Content Types

Countries

AID systems

API

Certificates

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
  • 1 (current)
Found 13 result(s)
The Northern California Earthquake Data Center (NCEDC) is a permanent archive and distribution center primarily for multiple types of digital data relating to earthquakes in central and northern California. The NCEDC is located at the Berkeley Seismological Laboratory, and has been accessible to users via the Internet since mid-1992. The NCEDC was formed as a joint project of the Berkeley Seismological Laboratory (BSL) and the U.S. Geological Survey (USGS) at Menlo Park in 1991, and current USGS funding is provided under a cooperative agreement for seismic network operations.
The Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications. Beyond generating tens of trillions of DNA bases annually, the Institute develops and maintains data management systems and specialized analytical capabilities to manage and interpret complex genomic data sets, and to enable an expanding community of users around the world to analyze these data in different contexts over the web. The JGI Genome Portal provides a unified access point to all JGI genomic databases and analytical tools. A user can find all DOE JGI sequencing projects and their status, search for and download assemblies and annotations of sequenced genomes, and interactively explore those genomes and compare them with other sequenced microbes, fungi, plants or metagenomes using specialized systems tailored to each particular class of organisms. Databases: Genome Online Database (GOLD), Integrated Microbial Genomes (IGM), MycoCosm, Phytozome
The HEASARC is a multi-mission astronomy archive for the EUV, X-ray, and Gamma ray wave bands. Because EUV, X and Gamma rays cannot reach the Earth's surface it is necessary to place the telescopes and sensors on spacecraft. The HEASARC now holds the data from 25 observatories covering over 30 years of X-ray, extreme-ultraviolet and gamma-ray astronomy. Data and software from many of the older missions were restored by the HEASARC staff. Examples of these archived missions include ASCA, BeppoSAX, Chandra, Compton GRO, HEAO 1, Einstein Observatory (HEAO 2), EUVE, EXOSAT, HETE-2, INTEGRAL, ROSAT, Rossi XTE, Suzaku, Swift, and XMM-Newton.
Country
Open At LaTrobe (OPAL) is La Trobe University’s official repository for Open Access materials generated by academic and professional staff and HDR students. These include publications and other research outputs, theses, open data, and educational resources. OPAL enables the storage, sharing, and selective publication of files and the assignment of a persistent DOI. Users maintain control over who can see their private files and all uploads are stored in La Trobe University approved storage. Access is via La Trobe University login credentials. La Trobe produces a wide range of useful datasets including supplementary data associated with publications and stand-alone datasets and collections.
The Mikulski Archive for Space Telescopes (MAST) is a NASA funded project to support and provide to the astronomical community a variety of astronomical data archives, with the primary focus on scientifically related data sets in the optical, ultraviolet, and near-infrared parts of the spectrum. MAST is located at the Space Telescope Science Institute (STScI).
The Copernicus Marine Environment Monitoring Service (CMEMS) provides regular and systematic reference information on the physical and biogeochemical state, variability and dynamics of the ocean and marine ecosystems for the global ocean and the European regional seas. The observations and forecasts produced by the service support all marine applications, including: Marine safety; Marine resources; Coastal and marine environment; Weather, seasonal forecasting and climate. For instance, the provision of data on currents, winds and sea ice help to improve ship routing services, offshore operations or search and rescue operations, thus contributing to marine safety. The service also contributes to the protection and the sustainable management of living marine resources in particular for aquaculture, sustainable fisheries management or regional fishery organisations decision-making process. Physical and marine biogeochemical components are useful for water quality monitoring and pollution control. Sea level rise is a key indicator of climate change and helps to assess coastal erosion. Sea surface temperature elevation has direct consequences on marine ecosystems and appearance of tropical cyclones. As a result of this, the service supports a wide range of coastal and marine environment applications. Many of the data delivered by the service (e.g. temperature, salinity, sea level, currents, wind and sea ice) also play a crucial role in the domain of weather, climate and seasonal forecasting.
Originally named the Radiation Belt Storm Probes (RBSP), the mission was re-named the Van Allen Probes, following successful launch and commissioning. For simplicity and continuity, the RBSP short-form has been retained for existing documentation, file naming, and data product identification purposes. The RBSPICE investigation including the RBSPICE Instrument SOC maintains compliance with requirements levied in all applicable mission control documents.
Country
CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R. R is ‘GNU S’, a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc. Please consult the R project homepage for further information.
The MPC is responsible for the designation of minor bodies in the solar system: minor planets; comets, in conjunction with the Central Bureau for Astronomical Telegrams (CBAT); and natural satellites (also in conjunction with CBAT). The MPC is also responsible for the efficient collection, computation, checking and dissemination of astrometric observations and orbits for minor planets and comets
UNAVCO promotes research by providing access to data that our community of geodetic scientists uses for quantifying the motions of rock, ice and water that are monitored by a variety of sensor types at or near the Earth's surface. After processing, these data enable millimeter-scale surface motion detection and monitoring at discrete points, and high-resolution strain imagery over areas of tens of square meters to hundreds of square kilometers. The data types include GPS/GNSS, imaging data such as from SAR and TLS, strain and seismic borehole data, and meteorological data. Most of these can be accessed via web services. In addition, GPS/GNSS datasets, TLS datasets, and InSAR products are assigned digital object identifiers.
The THEMIS mission is a five-satellite Explorer mission whose primary objective is to understand the onset and macroscale evolution of magnetospheric substorms. The five small satellites were launched together on a Delta II rocket and they carry identical sets of instruments including an electric field instrument (EFI), a flux gate magnetometer (FGM), a search coil magnetometer (SCM), a electro-static analyzer, and solid state telescopes (SST). The mission consists of several phases. In the first phase, the spacecraft will all orbit as a tight cluster in the same orbital plane with apogee at 15.4 Earth radii (RE). In the second phase, also called the Dawn Phase, the satellites will be placed in their orbits and during this time their apogees will be on the dawn side of the magnetosphere. During the third phase (also known as the Tail Science Phase) the apogees will be in the magnetotail. The fourth phase is called the Dusk Phase or Radiation Belt Science Phase, with all apogees on the dusk side. In the fifth and final phase, the apogees will shift to the sunward side (Dayside Science Phase). The satellite data will be combined with observations of the aurora from a network of 20 ground observatories across the North American continent. The THEMIS-B (THEMIS-P1) and THEMIS-C (THEMIS-P2) were repurposed to study the lunar environment in 2009. The spacecraft were renamed ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun), with the P1 and P2 designations maintained.
The PRIDE PRoteomics IDEntifications database is a centralized, standards compliant, public data repository for proteomics data, including protein and peptide identifications, post-translational modifications and supporting spectral evidence. PRIDE encourages and welcomes direct user submissions of mass spectrometry data to be published in peer-reviewed publications.